タグ「座標」の検索結果

84ページ目:全2097問中831問~840問を表示)
安田女子大学 私立 安田女子大学 2014年 第4問
$k$を正の定数とする.$f(x)=2x^3-12kx^2+18k^2x$とするとき,以下の問いに答えよ.

(1)関数$f(x)$の極大値および極小値を求めよ.
(2)関数$f(x)$が極大となるグラフ上の点を通り,$x$軸と平行な直線が再びこのグラフと交わる点の座標を求めよ.
(3)区間$0 \leqq x \leqq 8$における$f(x)$の最大値を求めよ.
安田女子大学 私立 安田女子大学 2014年 第3問
関数$y=f(x)=x^2-4x$のグラフを$x$軸方向に$-1$,$y$軸方向に$2$移動したときのグラフを表す関数を$y=g(x)$とする.また直線$L$を$y=ax-3a-7$($a$は定数)とするとき,次の問いに答えよ.

(1)$y=g(x)$を表す式を求めよ.
(2)$y=f(x)$と直線$L$が異なる$2$点で交わるための条件を求めよ.
(3)$y=g(x)$と直線$L$が接するとき,接点の座標を求めよ.
安田女子大学 私立 安田女子大学 2014年 第3問
$xy$座標平面上に$\mathrm{A}(3 \sqrt{3},\ 7)$,$\mathrm{B}(\sqrt{3},\ -5)$,$\mathrm{C}(0,\ -2)$の$3$点がある.

(1)$|\overrightarrow{\mathrm{AB}}|$を求めよ.
(2)$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$のなす角$\theta$を求めよ.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(3)線分$\mathrm{AB}$を$2:3$で内分する点を$\mathrm{P}$としたとき,$\triangle \mathrm{APC}$の面積$S$を求めよ.
同志社大学 私立 同志社大学 2014年 第1問
次の$[ ]$に適する数または式を記入せよ.

$a$を実数とする.極値を持つ$3$次関数$f(x)=x^3-ax$について考える.$3$次関数$y=f(x)$が極値を持つための$a$の満たすべき条件は$[ア]$であり,そのとき,極小値は$[イ]$である.このとき,座標平面で曲線$C:y=f(x)$上の原点以外の点$\mathrm{P}(p,\ f(p))$における曲線$C$の接線$L$の方程式は$[ウ]$と表せる.また,曲線$C$と接線$L$の点$\mathrm{P}$以外の共有点$\mathrm{Q}$の$x$座標$q$は,$q=[エ]$となる.また,点$\mathrm{P}$と異なる曲線$C$上の点$\mathrm{R}(r,\ f(r))$における接線が接線$L$と平行であるとき,$r=[オ]$である.$\triangle \mathrm{PQR}$の面積$M$を求めると$M=[カ]$である.さらに,曲線$C$を$x$軸正の方向に$t (t>0)$だけ平行移動した曲線を$D$とするとき,この$2$曲線$C$と$D$とが異なる$2$つの共有点を持つための$t$の満たすべき条件は$[キ]$である.そのときの$2$つの共有点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすると,$\alpha=[ク]$であり,$\beta=[ケ]$となる.このとき,$2$曲線$C$と$D$とで囲まれる図形の面積$S$を求めると$S=[コ]$である.
同志社大学 私立 同志社大学 2014年 第2問
$p,\ q$を実数とする$t$に関する$2$次方程式$t^2+pt+q=0$の解が虚数になるとき,次の問いに答えよ.

(1)解の$1$つを$\alpha$とするとき,$\alpha (2-\alpha)$が実数でありかつ$\alpha (2-\alpha)<2$となるための$p,\ q$の条件を求めよ.
(2)虚部が負の解を$\beta$とする.$(1)$の条件のもとで$\beta (1-\beta)$の実部を$y$,虚部を$x$として,座標平面上の点$\mathrm{P}(x,\ y)$の軌跡を求めよ.
(3)$(2)$で求めた軌跡上の点$\mathrm{P}(x,\ y)$と定点$\mathrm{Q}(0,\ 1)$との距離が最小となるときの点$\mathrm{P}$の座標と距離$\mathrm{PQ}$を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第3問
曲線$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$と,正の定数$m$がある.このとき,以下の問いに答えなさい.

(1)傾きが$m$となる$C$の接線を$2$本求めなさい.
(2)直線$y=mx$と$C$の交点の座標を$\mathrm{P}$および$\mathrm{Q}$とするとき,$\mathrm{P}$,$\mathrm{Q}$それぞれの座標を求めなさい.ただし,$\mathrm{P}$の$x$座標は正の値とする.
(3)$(1)$で求めた$2$本の接線および,$(2)$の点$\mathrm{P}$,$\mathrm{Q}$それぞれにおける$C$の接線とで囲まれた図形の面積を求めなさい.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第4問
$a,\ b$は$1$と異なる正の実数で,$ab \neq 1$,$\displaystyle \frac{a}{b} \neq 1$を満たすものとする.
\[ \text{不等式} \quad \log_{ab}a<\log_{\frac{a}{b}} ab \quad \cdots\cdots① \]
について,以下の問いに答えなさい.

(1)$X=\log_a b$とおくとき,$①$を$X$についての不等式で表すと,
\[ \frac{[$1$]}{(1+X)(1-X)}<0 \]
となる.$[$1$]$にあてはまる適切な式を求めなさい.
(2)不等式$①$を満たす点$(a,\ b)$の存在する領域を,座標平面上に図示しなさい.
同志社大学 私立 同志社大学 2014年 第3問
座標平面において$x$軸上を動く点$\mathrm{P}(a,\ 0)$を中心とする半径$1$の円を$K$とする.次の問いに答えよ.

(1)円$K$が直線$y=x-2$と接するときの$a$の値を求めよ.
(2)$t$を変数とする関数を,$\displaystyle F(t)=\int_t^1 \sqrt{1-x^2} \, dx (-1 \leqq t \leqq 1)$とする.$0 \leqq a<1$のとき,円$K$の内部と領域$x \leqq 0$の共通部分の面積を関数$F(t)$を用いて表せ.
(3)領域$D=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq x-2 \}$とする.円$K$の内部と領域$D$との共通部分の面積が最大となるときの$a$の値を求めよ.
同志社大学 私立 同志社大学 2014年 第2問
座標空間内の球面$x^2+y^2+z^2=9$上に$3$点$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 2)$,$\mathrm{C}(1,\ -2,\ 2)$をとる.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に,原点$\mathrm{O}$から下ろした垂線の足$\mathrm{H}$の座標を求めよ.
(3)球面上を動く点$\mathrm{P}$を頂点とする四面体$\mathrm{PABC}$を考え,その体積を$V$とする.$V$の最大値と,そのときの点$\mathrm{P}$の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
放物線$p_1:y=x^2-4x+5$と,その上の点$\mathrm{P}(4,\ 5)$を考える.

(1)傾きが$-2$で,放物線$p_1$に接する直線$\ell$の方程式は
\[ y=-2x+[$17$] \]
であり,放物線$p_1$と直線$\ell$の接点$\mathrm{Q}$の座標は$([$18$],\ [$19$])$である.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通り,頂点の$y$座標が$6$であるような放物線の方程式は
\[ y=-x^2+[$20$]x-[$21$] \]
または
\[ y=-\frac{1}{[$22$]}(x^2-[$23$][$24$]x-[$25$]) \]
である.
$(2)$で求めた放物線のうち,方程式$y=-x^2+[$20$]x-[$21$]$で定まるものを$p_2$とし,放物線$p_2$の頂点を$\mathrm{R}$とする.
(3)$\displaystyle \cos \angle \mathrm{PRQ}=\frac{\sqrt{[$26$][$27$]}}{[$28$][$29$]}$であり,三角形$\mathrm{PQR}$の面積は$[$30$]$である.
(4)$2$つの放物線$p_1$と$p_2$で囲まれた図形の面積は$[$31$]$である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。