タグ「座標」の検索結果

82ページ目:全2097問中811問~820問を表示)
早稲田大学 私立 早稲田大学 2014年 第3問
次の各問に答えよ.ただし,$(2)$は答のみ解答欄に記入せよ.

(1)放物線$y=ax^2+bx (a>0)$と直線$y=mx$が異なる$2$点で交わるとする.原点と異なる交点の$x$座標を$\alpha$とするとき,放物線と直線で囲まれた図形の面積は$\displaystyle S=\frac{1}{6}a |\alpha|^3$であることを示せ.
(2)$2$つの放物線$C_1:y=a_1x^2+b_1x$,$C_2:y=a_2x^2+b_2x$が異なる$2$点で交わるとする.ただし,$a_1a_2<0$とする.

(i) 放物線$C_1$,$C_2$の$2$つの交点を通る直線を$\ell:y=mx$とするとき,$m$を求めよ.
(ii) 放物線$C_i$と直線$\ell$で囲まれた図形の面積を$S_i (i=1,\ 2)$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(iii) $m=1$かつ$S_1=S_2$のとき,$a_i,\ b_i (i=1,\ 2)$が満たす条件を求めよ.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$x^2+4x-5=0$の解は$[$1$]$である.また,不等式$x^2+4x-5>0$の解は$[$2$]$である.
(2)整式$f(x)$を$(x-3)(x+2)$で割った余りは$4x-3$である.このとき,$f(x)$を$x+2$で割った余りは$[$3$]$である.
(3)$0 \leqq \theta \leqq \pi$のとき,関数$y=2 \cos^2 \theta+2 \sqrt{2} \sin \theta$の最大値は$[$4$]$,最小値は$[$5$]$である.
(4)$3$点$\mathrm{A}(5,\ -1)$,$\mathrm{B}(2,\ 2)$,$\mathrm{C}$を頂点とする三角形の重心の座標が$\displaystyle \left( \frac{7}{3},\ -\frac{5}{3} \right)$であるとき,点$\mathrm{C}$の座標は$[$6$]$である.このとき,点$\mathrm{C}$を通り直線$\mathrm{AB}$に平行な直線の方程式は$[$7$]$であり,$\cos B$の値は$[$8$]$である.
(5)白の碁石が$5$個,黒の碁石が$5$個,合わせて$10$個の碁石から$8$個の碁石を選んで一列に並べるとき,並べ方は$[$9$]$通りある.このうち,同じ色の碁石が連続して$5$個並ぶ並べ方は$[$10$]$通りあり,また白の碁石が連続して$4$個以上並ぶ並べ方は$[$11$]$通りある.
日本女子大学 私立 日本女子大学 2014年 第3問
座標平面上を動く点$\mathrm{P}$が原点$(0,\ 0)$を出発して,$1$枚の硬貨を投げて表が出たら$x$軸方向の正の向きに$1$だけ進み,裏が出たら$y$軸方向の正の向きに$1$だけ進むとき,次の問いに答えよ.

(1)硬貨を$4$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$に到達する確率を求めよ.
(2)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(5,\ 4)$に到達する確率を求めよ.
(3)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$を通らずに,点$(5,\ 4)$に到達する確率を求めよ.
津田塾大学 私立 津田塾大学 2014年 第2問
放物線$C_1:y=x^2$と放物線$C_2:y=-(x-a)^2+b$が点$\mathrm{P}(t,\ t^2) (t>0)$において接している.

(1)$a$と$b$を$t$を用いて表せ.
(2)曲線$C_2$と$x$軸との交点のうち,$x$座標の小さい点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.$C_1$と$C_2$と線分$\mathrm{OQ}$で囲まれた部分の面積を$S_1$とし,$C_2$と線分$\mathrm{OQ}$と$y$軸で囲まれた部分の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$は$t$に無関係な値であることを示せ.
学習院大学 私立 学習院大学 2014年 第4問
$a$を正の実数とし,$2$つの放物線
\[ C_1:y={\left( 2x+\frac{1}{a} \right)}^2,\quad C_2:y={(x-a)}^2 \]
を考える.

(1)$C_1$と$C_2$の交点の座標を求めよ.
(2)$C_1$と$C_2$とで囲まれる部分の面積$S$を求めよ.
(3)$a$が正の実数全体を動くとき,$S$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第3問
直線$4x+3y=48$,$3x-4y=0$と$y$軸のつくる三角形に内接する円の中心の座標は$\displaystyle \left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right)$である.
早稲田大学 私立 早稲田大学 2014年 第3問
直線$4x+3y=48$,$3x-4y=0$と$y$軸のつくる三角形に内接する円の中心の座標は$\displaystyle \left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right)$である.
早稲田大学 私立 早稲田大学 2014年 第4問
原点を$\mathrm{O}$とする空間に点$\mathrm{A}(1,\ 1,\ 1)$,点$\mathrm{B}(1,\ 2,\ 3)$,点$\mathrm{P}(4,\ 0,\ -1)$がある.線分$\mathrm{AB}$を直径とする円のうち,直線$\mathrm{OA}$と$2$点で交わるものを円$S$とし,点$\mathrm{A}$以外の交点を$\mathrm{C}$とする.

(1)点$\mathrm{C}$の座標は$([チ],\ [ツ],\ [テ])$である.
(2)円$S$を含む平面と,点$\mathrm{P}$からこの平面におろした垂線との交点の座標は$\displaystyle \left( \frac{[ト]}{[ナ]},\ [ニ],\ -\frac{3}{2} \right)$である.
早稲田大学 私立 早稲田大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に

放物線$C_1:y=x^2$,円$C_2:x^2+(y-a)^2=1 \quad (a \geqq 0)$

がある.$C_2$の点$(0,\ a+1)$における接線と$C_1$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\triangle \mathrm{OAB}$が$C_2$に外接しているとする.次の問に答えよ.

(1)$a$を求めよ.
(2)点$(s,\ t)$を$(-1,\ a)$,$(1,\ a)$,$(0,\ a-1)$と異なる$C_2$上の点とする.そして点$(s,\ t)$における$C_2$の接線と$C_1$との$2$つの交点を$\mathrm{P}(\alpha,\ \alpha^2)$,$\mathrm{Q}(\beta,\ \beta^2)$とする.このとき,${(\alpha-\beta)}^2-\alpha^2 \beta^2$は$s,\ t$によらない定数であることを示せ.
(3)$(2)$において,点$\mathrm{P}(\alpha,\ \alpha^2)$から$C_2$への$2$つの接線が再び$C_1$と交わる点を$\mathrm{Q}(\beta,\ \beta^2)$,$\mathrm{R}(\gamma,\ \gamma^2)$とする.$\beta+\gamma$および$\beta\gamma$を$\alpha$を用いて表せ.
(4)$(3)$の$2$点$\mathrm{Q}$,$\mathrm{R}$に対し,直線$\mathrm{QR}$は$C_2$と接することを示せ.
神奈川大学 私立 神奈川大学 2014年 第3問
$x>0$に対して,曲線$\displaystyle C:y=\frac{1}{x^2}$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t^2} \right)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}$とする.また,点$(t,\ 0)$を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式と点$\mathrm{Q}$の座標を求めよ.
(2)三角形$\mathrm{PHQ}$の面積$S_1$を求めよ.
(3)曲線$C$,線分$\mathrm{PQ}$および$\mathrm{Q}$を通る$y$軸に平行な直線で囲まれた部分の面積を$S_2$とする.このとき,$\displaystyle \frac{S_1}{S_2}$を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。