タグ「座標」の検索結果

77ページ目:全2097問中761問~770問を表示)
福島大学 国立 福島大学 2014年 第3問
円$C:x^2+y^2=2$と直線$\ell:x+y=k$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.

(1)$k$の値の範囲を求めなさい.
(2)$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とするとき,$\alpha+\beta$および$\alpha \beta$を$k$を用いて表しなさい.
(3)線分$\mathrm{PQ}$の長さを$k$を用いて表しなさい.
(4)円$C$上の点$\mathrm{A}(-1,\ -1)$について
\[ 2 \mathrm{PQ}=\mathrm{AP} \]
となるときの$k$の値を求めなさい.
福島大学 国立 福島大学 2014年 第3問
円$C:x^2+y^2=2$と直線$\ell:x+y=k$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.

(1)$k$の値の範囲を求めなさい.
(2)$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とするとき,$\alpha+\beta$および$\alpha \beta$を$k$を用いて表しなさい.
(3)線分$\mathrm{PQ}$の長さを$k$を用いて表しなさい.
(4)円$C$上の点$\mathrm{A}(-1,\ -1)$について
\[ 2 \mathrm{PQ}=\mathrm{AP} \]
となるときの$k$の値を求めなさい.
福島大学 国立 福島大学 2014年 第5問
$a,\ b$を正の定数とし,関数$y=f(x)$,$y=g(x)$を次のように定める.


$f(x)=2 \sqrt{x-a} \quad (x \geqq a)$

$\displaystyle g(x)=\frac{x^2}{4}+b \quad (x \geqq 0)$


$y=f(x)$のグラフを$C_1$,$y=g(x)$のグラフを$C_2$とし,$C_1$と$C_2$は$1$点$\mathrm{P}$において接している.すなわち,点$\mathrm{P}$は$C_1$,$C_2$上にあり,点$\mathrm{P}$におけるそれぞれの接線は一致する.

(1)関数$y=f(x)$の導関数を求めなさい.
(2)点$\mathrm{P}$の$x$座標を$t$とするとき,$a$および$b$を$t$を用いて表しなさい.
(3)$t$の値の範囲を求めなさい.
(4)$C_1$,$C_2$,$x$軸,$y$軸で囲まれた図形の面積$S$を$t$を用いて表しなさい.
(5)$S$の最大値と,そのときの$t$の値を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$\mathrm{O}$を原点とする$xy$平面上に円$C:x^2+y^2=r^2$と放物線$\displaystyle D:y=\frac{1}{2}x^2-t$がある.ただし$r$と$t$はそれぞれ正の実数の定数とする.点$(0,\ -55)$から放物線$D$に傾きが正の接線を引くとき,その接線の傾きは$3 \sqrt{6}$である.放物線$D$上には$x$座標がそれぞれ$-4 \sqrt{3}$,$4 \sqrt{3}$である点$\mathrm{P}$,$\mathrm{Q}$があり,円$C$はこの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る.このとき,

(1)$t=[$40$][$41$]$である.
(2)$r=[$42$]$である.
(3)円$C$と$2$線分$\mathrm{OP}$,$\mathrm{OQ}$で囲まれる$2$つの扇形のうち,$\angle \mathrm{POQ}$が$\pi$より小さい方の面積は$\displaystyle \frac{[$43$][$44$]}{[$45$]} \pi$である.
(4)円$C$と放物線$D$で囲まれた図形のうち,
\[ \left\{ \begin{array}{l}
x^2+y^2 \geqq r^2 \\
y \geqq \displaystyle\frac{1}{2}x^2-t
\end{array} \right. \]
で表される図形の面積は$\displaystyle [$46$][$47$][$48$] \sqrt{[$49$]}-\frac{[$50$][$51$]}{[$52$]} \pi$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)座標平面上に曲線$C_1:y=x^2-1$がある.$x$軸に関して$C_1$に対称な曲線を$C_2$とすると,$C_2$を表す方程式は$[ケ]$である.
$0 \leqq a \leqq 1$とするとき,$-a \leqq x \leqq a$において,曲線$C_2$と直線$y=a^2-1$,および$2$直線$x=-a$,$x=a$で囲まれた図形の面積$S(a)$は,
\[ S(a)=[コ] \]
となる.$S(a)$は,$a=[サ]$のとき最大値$[シ]$をとる.
(2)関数$f(x)=8^x-6 \cdot 4^x+5 \cdot 2^x$を考える.$f(x)=-12$を満たす実数$x$をすべて求めると,$x=[ス]$となる.また,方程式$f(x)=k$が$3$つの実数解をもつような定数$k$の値の範囲は,$[セ]<k<[ソ]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)座標平面上の$3$点$\mathrm{A}(4,\ 8)$,$\mathrm{O}(0,\ 0)$,$\mathrm{C}(12,\ 0)$を頂点とする三角形$\triangle \mathrm{AOC}$に接する正方形を,一辺が$\mathrm{OC}$上にあり,$2$頂点が三角形の他の辺上にあるようにとる.このとき正方形の一辺の長さは
\[ \frac{[$1$][$2$]}{[$3$][$4$]} \]
である.
(2)$u,\ v$を$0<u<2$,$0<v$なる実数とするとき
\[ (u-v)^2+\left( \sqrt{4-u^2}-\frac{18}{v} \right)^2 \]

\[ u=\sqrt{[$5$]},\quad v=[$6$] \sqrt{[$7$]} \]
のとき,最小値$[$8$][$9$]$をとる.(ヒント:平面上の$2$点の距離を考える.)
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
座標空間内の$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(0,\ 0,\ 3)$と原点$\mathrm{O}$を頂点とする四面体$\mathrm{OABC}$について考える.

四面体$\mathrm{OABC}$を平面$z=t (0<t<3)$で切ったときの切り口の面積を$f(t)$とする.$0<t \leqq 1$のとき$f(t)=[ソ]$である.また,$1<t<3$のとき平面$z=t$と辺$\mathrm{AB}$の交点の座標は$[タ]$となり,$f(t)=[チ]$となる.
次に,四面体$\mathrm{OABC}$において,$2$つの平面$z=t$と$z=t+2 (0<t<1)$の間にはさまれた部分の体積を$g(t)$とすると,その導関数は$g^\prime(t)=[ツ]$であり,$g(t)$は$t=[テ]$のとき最大値をとる.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。