タグ「座標」の検索結果

75ページ目:全2097問中741問~750問を表示)
東京農工大学 国立 東京農工大学 2014年 第2問
$a,\ b$を実数とする.行列$A=\left( \begin{array}{cc}
4 & 3 \\
a & b
\end{array} \right)$,$B=\left( \begin{array}{cc}
a & b \\
b & -a
\end{array} \right)$が
\[ AB=\left( \begin{array}{cc}
10 & 5 \\
5 & 0
\end{array} \right) \]
を満たしている.次の問いに答えよ.

(1)$a,\ b$の値を求めよ.ただし答えのみでよい.
(2)$m,\ n$は実数で,$m \neq 0$,$n \neq 0$とする.座標平面上の$2$点$\mathrm{S}_1(m,\ 0)$,$\mathrm{S}_2(0,\ n)$をとり,行列$A$が表す$1$次変換によって$S_1$,$S_2$が移る点をそれぞれ${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$とする.$2$点${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$を通る直線が$2$点$\mathrm{S}_1$,$\mathrm{S}_2$を通る直線に一致するとき,$n$を$m$の式で表せ.
(3)$2$点$\mathrm{T}_1(-7,\ 0)$,$\mathrm{T}_2(0,\ 7)$を通る直線を$\ell$とする.行列$B$が表す$1$次変換によって$\mathrm{T}_1$,$\mathrm{T}_2$が移る点をそれぞれ${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$とし,$2$点${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$を通る直線を$\ell^\prime$とする.原点を中心とする半径$r$の円を$C$とする.$C$と$\ell$が異なる$2$点で交わり,かつ$C$と$\ell^\prime$も異なる$2$点で交わるとする.このような$r$の値の範囲を求めよ.
(4)$(3)$において,円$C$が$\ell$を切り取る線分の長さを$L$とし,円$C$が$\ell^\prime$を切り取る線分の長さを$L^\prime$とする.このような$L,\ L^\prime$の中で,$L$が最も小さい自然数になるときの$L^\prime$の値を求めよ.
東京農工大学 国立 東京農工大学 2014年 第3問
$e$は自然対数の底とする.$\mathrm{O}$を原点とする座標平面に$3$点
\[ \mathrm{A}(e^{-\theta}+\sqrt{3},\ e^{-\theta}),\quad \mathrm{B}(\cos \theta,\ \sin \theta),\quad \mathrm{C}(\sqrt{3},\ 0) \]
がある.ただし,$\theta \geqq 0$とする.次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の面積を$F(\theta)$とする.$F(\theta)$を求めよ.
(2)$F(\theta)$の導関数を$F^\prime(\theta)$とする.区間$0<\theta<2\pi$において$F^\prime(\theta)=0$となる$\theta$の値をすべて求めよ.
(3)$n$を自然数とする.区間$2(n-1) \pi \leqq \theta \leqq 2n\pi$における$F(\theta)$の最大値,最小値をそれぞれ$\alpha_n$,$\beta_n$とする.$\alpha_n$,$\beta_n$を求めよ.また最大値を与える$\theta$の値と最小値を与える$\theta$の値を求めよ.
(4)$(3)$で求めた$\alpha_n (n=1,\ 2,\ 3,\ \cdots)$に対して,$\displaystyle S=\sum_{n=1}^\infty \alpha_n$とおく.$S$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
電気通信大学 国立 電気通信大学 2014年 第1問
関数$\displaystyle f(x)=\frac{e^x-2}{e^x+2}$について,以下の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)極限$\displaystyle \lim_{x \to \infty}f(x)$,$\displaystyle \lim_{x \to -\infty}f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$および第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(3)曲線$y=f(x)$を$C$とするとき,$C$の変曲点の座標を求めよ.
(4)曲線$C$の変曲点における接線$\ell$の方程式を求めよ.
(5)曲線$C$,$y$軸および接線$\ell$で囲まれた図形の面積$S$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第3問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
電気通信大学 国立 電気通信大学 2014年 第2問
$2$つの関数
\[ f(x)=x \sqrt{4-x^2} (0 \leqq x \leqq 2),\quad g(y)=\sqrt{4-y^2} (0 \leqq y \leqq 2) \]
を考える.座標平面上において,曲線$y=f(x)$を$C_1$とし,曲線$x=g(y)$を$C_2$とする.このとき,以下の問いに答えよ.

(1)$C_1$と$C_2$との共有点の座標を求めよ.
(2)関数$f(x)$の最大値$M$を求めよ.
(3)$C_1$と$x$軸とで囲まれた図形の面積$S$を求めよ.
(4)点$(x,\ y)$が$C_1$上にあるとき,$x^2$を$y$を用いて表せ.
(5)$y$軸および$2$曲線$C_1$,$C_2$で囲まれた図形を,$y$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2014年 第1問
$p$を正の定数として,放物線$C:y=(x-p)^2+p^2$を考える.$C$の$2$本の接線$\ell,\ m$を考え,接点の$x$座標を,それぞれ$a,\ b$とする.ただし,$a<0$,$b>0$とする.次の問いに答えよ.

(1)$\ell$と$m$の方程式を求めよ.
(2)$\ell,\ m$が原点を通るとき,$a,\ b$を$p$を用いて表せ.
(3)$\ell,\ m$が原点を通るとき,放物線$C$と$2$本の接線$\ell$および$m$によって囲まれた図形の面積を$S$とする.$S$を$p$を用いて表せ.
長崎大学 国立 長崎大学 2014年 第1問
$k$を実数とし,円$x^2+y^2=1$と直線$x+2y=k$が異なる$2$点で交わるものとする.その$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る円の中心は直線$y=2x$上にあることを示せ.
(3)上の$(2)$の円の中心を$(a,\ 2a)$,半径を$r$とする.$r^2$を$a$と$k$で表せ.
(4)点$\mathrm{R}$の座標を$(2,\ 1)$とする.$k$の値が$(1)$で求めた範囲を動くとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の中心の$x$座標の範囲を求めよ.
長崎大学 国立 長崎大学 2014年 第1問
$k$を実数とし,円$x^2+y^2=1$と直線$x+2y=k$が異なる$2$点で交わるものとする.その$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る円の中心は直線$y=2x$上にあることを示せ.
(3)上の$(2)$の円の中心を$(a,\ 2a)$,半径を$r$とする.$r^2$を$a$と$k$で表せ.
(4)点$\mathrm{R}$の座標を$(2,\ 1)$とする.$k$の値が$(1)$で求めた範囲を動くとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の中心の$x$座標の範囲を求めよ.
長崎大学 国立 長崎大学 2014年 第3問
曲線$C:y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.ただし,$1<t<e$とする.$e$は自然対数の底である.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$y$軸との交点を$\mathrm{Q}$とし,接線$\ell$と$x$軸との交点を$\mathrm{R}$とする.$\mathrm{Q}$と$\mathrm{R}$の座標を求めよ.
(3)接線$\ell$と$x$軸および$y$軸によって囲まれた図形を$D_1$,接線$\ell$と曲線$C$および$x$軸によって囲まれた図形を$D_2$とする.$D_1$の面積$S_1(t)$と$D_2$の面積$S_2(t)$を求めよ.
(4)$S(t)=S_1(t)+S_2(t)$とおく.このとき$S(t)$の増減を調べ,その最小値およびそのときの$t$の値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。