タグ「座標」の検索結果

74ページ目:全2097問中731問~740問を表示)
山形大学 国立 山形大学 2014年 第2問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第1問
座標平面上に動点$\mathrm{P}$が初め原点$(0,\ 0)$にある.$1$つのさいころをくり返し投げて,その出た目に応じて,以下のように$\mathrm{P}$を動かしていく.

(i) さいころの出た目が$1,\ 3,\ 5$であれば,$\mathrm{P}$は$x$軸に平行に正の向きに$1$動く.
(ii) 出た目が$2,\ 4$であれば,$\mathrm{P}$は$y$軸に平行に正の向きに$1$動く.
(iii) 出た目が$6$であれば,$\mathrm{P}$は直線$y=x$に関して対称な点に動く.

以下の問いに答えよ.

(1)さいころを$2$回投げたときに$\mathrm{P}$が点$(1,\ 0)$に動く確率を求めよ.
(2)さいころを$5$回投げたときに$\mathrm{P}$が点$(2,\ 3)$に動く確率を求めよ.
(3)さいころを$5$回投げたときに$\mathrm{P}$が直線$x=4$上の点に動く確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
放物線$y=x^2$を$C$,$y=-x^2+2x+4$を$D$とする.実数$t$を用いて表される$D$上の点$\mathrm{P}(t,\ -t^2+2t+4)$における$D$の接線を$\ell$とする.

(1)$C$と$D$が異なる$2$点で交わることを示し,その$x$座標を求めよ.
(2)接線$\ell$の方程式を$y=f(x)$とする.$f(x)$を求めよ.
(3)$(1)$で求めた$2$交点の$x$座標を$a,\ b (a<b)$とする.$a<t<b$を満たす$t$に対して,$(2)$で求めた接線$\ell$の方程式を$y=f(x)$とする.次の連立不等式の表す領域の面積を$S(t)$とする.
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
y \leqq f(x) \\
y \geqq -x^2+2x+4
\end{array} \right. \]

$t$が$a<t<b$の範囲を動くとき,$S(t)$が最小となる$t$の値と,そのときの$S(t)$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第1問
座標平面上に動点$\mathrm{P}$が初め原点$(0,\ 0)$にある.$1$つのさいころをくり返し投げて,その出た目に応じて,以下のように$\mathrm{P}$を動かしていく.

(i) さいころの出た目が$1,\ 3,\ 5$であれば,$\mathrm{P}$は$x$軸に平行に正の向きに$1$動く.
(ii) 出た目が$2,\ 4$であれば,$\mathrm{P}$は$y$軸に平行に正の向きに$1$動く.
(iii) 出た目が$6$であれば,$\mathrm{P}$は直線$y=x$に関して対称な点に動く.

以下の問いに答えよ.

(1)さいころを$2$回投げたときに$\mathrm{P}$が点$(1,\ 0)$に動く確率を求めよ.
(2)さいころを$5$回投げたときに$\mathrm{P}$が点$(2,\ 3)$に動く確率を求めよ.
(3)さいころを$5$回投げたときに$\mathrm{P}$が直線$x=4$上の点に動く確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
和歌山大学 国立 和歌山大学 2014年 第4問
曲線$C:y=e^x$上の点$\mathrm{P}$,$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\log t$,$\log 2t$とし,曲線$C$と直線$\ell,\ m$で囲まれた部分の面積を$S$とする.また,$\ell,\ m$の傾きをそれぞれ$\tan \alpha$,$\tan \beta$とする.ただし,$t>0$,$\displaystyle -\frac{\pi}{2}<\alpha<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\beta<\frac{\pi}{2}$である.このとき,次の問いに答えよ.

(1)$\tan \alpha,\ \tan \beta$および$S$をそれぞれ$t$を用いて表せ.
(2)$\beta-\alpha$が最大となるときの$t$の値を求めよ.
鳥取大学 国立 鳥取大学 2014年 第2問
$x$軸の正の部分を動く点$\mathrm{P}(t,\ 0) (t>0)$と$2$点$\mathrm{A}(0,\ 3)$,$\mathrm{B}(0,\ 7)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を通る円の中心の座標を$t$を用いて表せ.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通り,$x$軸の正の部分に接する円の方程式を求めよ.
(3)$\angle \mathrm{APB}$の大きさを最大にする点$\mathrm{P}$の座標を求めよ.
鳥取大学 国立 鳥取大学 2014年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数$\theta$に対して,関係式
\[ \frac{x^2}{(\cos \theta+2)^2}+\frac{y^2}{(\sin \theta+3)^2}=1 \]
を満たす第$1$象限内の点で,積$xy$の値を最大にする点を$\mathrm{P}(\theta)$とする.

(1)$\mathrm{P}(0)$の座標を求めよ.
(2)$\displaystyle \mathrm{P}(\theta) \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$の軌跡の方程式を求めよ.
鳥取大学 国立 鳥取大学 2014年 第4問
$a,\ b$を正の実数とする.$xy$平面内の楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の点$\mathrm{P}$における$C$の接線を$\ell$とする.$\mathrm{P}$を媒介変数表示により$\mathrm{P}(a \cos t,\ b \sin t) (0 \leqq t<2\pi)$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$に直交し,楕円$C$上の点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$ $(0<\theta<\pi)$で$C$に接する直線を$m$とする.接点$\mathrm{Q}$の座標を$a,\ b,\ t$を用いて表し,直線$m$の方程式を求めよ.
(3)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$と$(2)$で求めた直線$m$との交点を$\mathrm{R}$とする.線分$\mathrm{OR}$の長さを求めよ.ただし$\mathrm{O}$は原点とする.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。