タグ「座標」の検索結果

72ページ目:全2097問中711問~720問を表示)
九州工業大学 国立 九州工業大学 2014年 第1問
放物線$C:y=ax^2+bx+c (a>0)$を考える.$2$本の直線
\[ \ell_1:y=\frac{5}{2}x \quad \text{および} \quad \ell_2:y=-\frac{1}{2}x \]
は$C$に接するものとする.$C$と$\ell_1$の接点を$\mathrm{P}$,$C$と$\ell_2$の接点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\alpha,\ \beta,\ \gamma (\alpha \neq 0)$を定数とするとき,$2$次方程式$\alpha x^2+\beta x+\gamma=0$が重解を持つための条件を求めよ.
(2)$b$の値を求めよ.また,$c$を$a$を用いて表せ.
(3)$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$a$を用いて表せ.
(4)$a$の値にかかわらず$C$の頂点は直線$m$上にある.$m$の方程式を求めよ.
(5)$C$と$\ell_1$,$\ell_2$で囲まれた部分の面積を$a$を用いて表せ.
九州工業大学 国立 九州工業大学 2014年 第4問
点$\mathrm{P}$は次の$①$,$②$,$③$の規則に従って数直線上を動く.

\mon[$①$] 時刻$0$で,$\mathrm{P}$は整数座標点$0$から$10$のいずれかの位置$i (0 \leqq i \leqq 10)$にある.
\mon[$②$] 時刻$t (t=0,\ 1,\ 2,\ \cdots)$に位置$i (1 \leqq i \leqq 9)$にある$\mathrm{P}$は,$t+1$には確率$\displaystyle p \left( 0<p<\frac{1}{2} \right)$で位置$i+1$に,確率$1-p$で位置$i-1$に移動する.
\mon[$③$] 時刻$t$に位置$0$または$10$にある$\mathrm{P}$は,$t+1$にもその位置に留まる.

以下の問いに答えよ.

(1)$\mathrm{P}$が時刻$0$で位置$2$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
(2)$\mathrm{P}$が時刻$0$で位置$1$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
時刻$0$で位置$i$にある$\mathrm{P}$が,いずれかの時刻で位置$0$に到達する確率を$q_i$とする.ただし,$q_0=1$,$q_{10}=0$である.$1 \leqq i \leqq 9$のとき,$q_{i+1}$,$q_i$,$q_{i-1}$の間には$q_i=pq_{i+1}+(1-p)q_{i-1}$の関係が成り立つ.
(3)$q_{i+1}-q_i=[ ](q_i-q_{i-1})$である.空欄に入る適切な数または式を求めよ.
(4)$q_i$を$q_1$と$p$を用いて表せ.
(5)$q_1$を求め,$q_i$を$p$を用いて表せ.
室蘭工業大学 国立 室蘭工業大学 2014年 第2問
$a$を定数とし,$e$を自然対数の底とする.曲線$y=xe^{-x^2}$および直線$y=ax$をそれぞれ$C,\ L$とする.$C$と$L$は原点$(0,\ 0)$以外に交点をもつ.

(1)$a$の値の範囲を求めよ.また,$C$と$L$の交点でその$x$座標が正であるものを$a$を用いて表せ.
(2)$x \geqq 0$において$C$と$L$で囲まれた部分の面積を$S(a)$とするとき,$S(a)$を求めよ.
(3)$\displaystyle S(a)<\frac{1}{2}$であることを示せ.
山口大学 国立 山口大学 2014年 第2問
座標平面において,方程式$\displaystyle \frac{x^2}{9}-\frac{y^2}{4}=1$が表す双曲線$C$と点$\mathrm{P}(a,\ 0)$がある.ただし,$a>3$とする.点$\mathrm{P}$を通り$y$軸に平行な直線と双曲線$C$との交点の一つである点$\mathrm{Q}(a,\ b)$をとる.ただし,$b>0$とする.さらに,点$\mathrm{Q}$における双曲線$C$の接線$\ell$と$x$軸との交点を$\mathrm{R}(c,\ 0)$とする.このとき,次の問いに答えなさい.

(1)$a$を用いて$b$を表しなさい.
(2)$a$を用いて接線$\ell$の方程式を表しなさい.
(3)$a$を用いて$c$を表しなさい.
(4)極限値$\displaystyle \lim_{a \to \infty} \frac{\mathrm{PQ}}{\mathrm{PR}}$を求めなさい.
山口大学 国立 山口大学 2014年 第1問
$k$を正の実数とする.座標平面において,方程式$y=-x^2-2x-1$が表す放物線$C_1$および方程式$y=kx^2$が表す放物線$C_2$がある.このとき,次の問いに答えなさい.

(1)放物線$C_1$の接線であり,$C_2$の接線でもあるような直線は$2$つある.この$2$つの直線の方程式を求めなさい.
(2)$(1)$で求めた$2$つの直線の交点を$\mathrm{P}$とする.$k$が正の実数の範囲を動くときの$\mathrm{P}$の軌跡を求め,図示しなさい.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
山口大学 国立 山口大学 2014年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(1,\ 1)$がある.方程式$y=-ax+2a+2$が表す直線を$\ell$とするとき,次の問いに答えなさい.ただし,$a$は正の実数とする.

(1)直線$\ell$に関して点$\mathrm{A}$と対称な点を$\mathrm{A}^\prime$とする.$\mathrm{A}^\prime$の座標を求めなさい.
(2)点$\mathrm{P}$が直線$\ell$上を動くときの$\mathrm{OP}+\mathrm{PA}$の最小値を,$a$を用いて表しなさい.
(3)$(2)$で求めた$\mathrm{OP}+\mathrm{PA}$の最小値を$f(a)$とするとき,$f(a)$を最大にするような$a$の値を求めなさい.
島根大学 国立 島根大学 2014年 第3問
$a_1=2$とし,$f(x)=x^2-3$とする.曲線$y=f(x)$上の点$(a_1,\ f(a_1))$における接線が$x$軸と交わる点の$x$座標を$a_2$とする.以下同様に,$n=3,\ 4,\ \cdots$に対して,曲線$y=f(x)$上の点$(a_{n-1},\ f(a_{n-1}))$における接線が$x$軸と交わる点の$x$座標を$a_n$とする.数列$\{a_n\}$に対して,次の問いに答えよ.

(1)$a_2$を求めよ.
(2)$a_{n+1}$を$a_n$を用いて表せ.
(3)$a_n \geqq \sqrt{3}$を示せ.
(4)$\displaystyle a_n-\sqrt{3} \leqq {\left( \frac{1}{2} \right)}^{n-1} (2-\sqrt{3})$を示し,$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。