タグ「座標」の検索結果

71ページ目:全2097問中701問~710問を表示)
群馬大学 国立 群馬大学 2014年 第3問
曲線$y=\log x$上の点$\mathrm{P}(1,\ 0)$における接線と$y$軸の交点を$\mathrm{Q}$とする.$\mathrm{Q}$を通り$x$軸に平行な直線と曲線$y=\log x$の交点を$\mathrm{R}$とする.ここで,対数は自然対数である.このとき,以下の問いに答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)線分$\mathrm{PR}$と曲線$y=\log x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めよ.
群馬大学 国立 群馬大学 2014年 第2問
座標平面において,$4$直線$y=2$,$y=-4$,$x=-3$,$x=5$上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$をとる.この$4$点を頂点とする四角形が$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$となる正方形であるとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
群馬大学 国立 群馬大学 2014年 第5問
座標平面上の曲線$C$は媒介変数$t (t \geqq 0)$を用いて$x=t^2+2t+\log (t+1)$,$y=t^2+2t-\log (t+1)$と表される.$C$上の点$\mathrm{P}(a,\ b)$における$C$の接線の傾きが$\displaystyle \frac{2e-1}{2e+1}$であるとする.ただし,$e$は自然対数の底である.このとき,以下の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)$\mathrm{Q}$を座標$(b,\ a)$の点とする.直線$\mathrm{PQ}$,直線$y=x$と曲線$C$で囲まれた図形を,直線$y=x$の周りに$1$回転してできる立体の体積を求めよ.
群馬大学 国立 群馬大学 2014年 第5問
座標平面において,$4$直線$y=2$,$y=-4$,$x=-3$,$x=5$上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$をとる.この$4$点を頂点とする四角形が$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$となる正方形であるとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
群馬大学 国立 群馬大学 2014年 第4問
座標平面において,$4$直線$y=2$,$y=-4$,$x=-3$,$x=5$上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$をとる.この$4$点を頂点とする四角形が$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$となる正方形であるとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
高知大学 国立 高知大学 2014年 第2問
$\{a_n\},\ \{b_n\}$を${a_n}^2-b_n \geqq 0 (n=1,\ 2,\ \cdots)$となる数列とし,$3$次関数
\[ y=x^3+3a_nx^2+3b_nx+1 \]
のグラフの接線の傾きが$0$となる接点の$x$座標のうち小さくない方を$c_n$とする.このとき,次の問いに答えよ.

(1)$\{a_n\},\ \{b_n\}$が$a_n=n$,$b_n=n^2$で与えられる数列のとき,$\{c_n\}$を求めよ.
(2)$\{b_n\}$を初項も公差も$0$である等差数列とする.このとき,$c_n=b_n (n=1,\ 2,\ \cdots)$となるための条件を求めよ.
(3)$\{a_n\},\ \{b_n\}$をそれぞれ公比が$r$,$r^2$の等比数列とする.このとき,$\{c_n\}$が等比数列になるための条件を求めよ.
(4)$\{a_n\}$が初項$100$,公差$-3$の等差数列で,$\{b_n\}$は初項$396$,公差$-12$の等差数列のとき,$\{c_n\}$を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
関数
\[ f(x)=\int_{-a}^x (a-|t|) \, dt \]
を考える.次の問いに答えよ.ただし,$a$は正の定数とする.

(1)$x \leqq 0$と$x \geqq 0$の場合に,関数$f(x)$を求めよ.
(2)関数$y=f(x)$のグラフをかけ.
(3)曲線$y=f(x)$上の点$\mathrm{A}$の$x$座標は負であり,点$\mathrm{A}$における曲線$y=f(x)$の接線の傾きが$-\sqrt{2}a$であるとき,点$\mathrm{A}$の座標を求めよ.さらに,点$\mathrm{A}$を通って$x$軸に平行な直線と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
宮崎大学 国立 宮崎大学 2014年 第3問
$a>0$,$a \neq 1$,$b>0$とする.このとき,変数$x$の関数
\[ f(x)=4x^2+4x \log_ab+1 \]
について,次の各問に答えよ.

(1)$2$次方程式$f(x)=0$が重解を持つようなすべての$a,\ b$を,座標平面上の点$(a,\ b)$として図示せよ.
(2)$2$次方程式$f(x)=0$が$\displaystyle 0<x<\frac{1}{2}$の範囲内にただ$1$つの解を持つようなすべての$a,\ b$を,座標平面上の点$(a,\ b)$として図示せよ.
(3)放物線$y=f(x)$の頂点の座標を$(X,\ Y)$とする.点$(a,\ b)$が$(2)$の条件を満たしながら動くとき,点$(X,\ Y)$の軌跡を座標平面上に図示せよ.
室蘭工業大学 国立 室蘭工業大学 2014年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$,$g(x)$をそれぞれ
\[ f(x)=ax^2+bx+c,\quad g(x)=f^\prime(x) \]
と定め,放物線$y=f(x)$および直線$y=g(x)$をそれぞれ$C$,$L$とする.$C$の軸は$x=1$であり,$C$と$L$はともに点$(2,\ 2)$を通る.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C$を$y$軸方向に$d$だけ平行移動させた曲線を$D$とする.$D$は$L$と$2$点で交わり,その$2$点間の距離は$4 \sqrt{5}$である.この$2$点の座標,および$d$の値を求めよ.
(3)$L$と$D$で囲まれた部分の面積$S$を求めよ.
山形大学 国立 山形大学 2014年 第1問
座標平面上の点$(-2,\ 1)$を$\mathrm{A}$,点$\displaystyle \left( a,\ \frac{1}{4}a^2 \right)$を$\mathrm{B}$とする.ただし,$0<a<2$とする.また,$\displaystyle y=\frac{1}{4}x^2$で表される放物線を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$と線分$\mathrm{AB}$で囲まれる部分の面積$S$を$a$の式で表せ.
(2)直線$\mathrm{AB}$が直線$x=2$と交わる点を$\mathrm{D}$とする.放物線$C$と線分$\mathrm{BD}$および直線$x=2$で囲まれる部分の面積$T$を$a$の式で表せ.
(3)次の条件によって定められる数列$\{p_n\},\ \{q_n\}$の一般項を求めよ.

(i) $p_1=1,\ p_n>0,$
(ii) $\displaystyle q_n=\frac{1}{4}{p_n}^2,$
(iii) $p_n-p_{n+1}=2 \sqrt{q_nq_{n+1}}$

(4)$a=p_n$のとき,$(1)$と$(2)$で求めた$S$と$T$に対し,$T>S$となる最小の$n$を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。