タグ「座標」の検索結果

65ページ目:全2097問中641問~650問を表示)
岩手大学 国立 岩手大学 2014年 第5問
$a,\ b$を実数とするとき,関数$f(x)=x^3-ax^2+bx$について,次の問いに答えよ.

(1)$y=f(x)$のグラフ上の点$(t,\ f(t))$における接線の方程式を求めよ.
(2)$a=1,\ b=-1$のとき,$y=f(x)$のグラフの接線で点$(-1,\ 1)$を通るものは何本あるか答えよ.また,このときの各接点の$x$座標を求めよ.
(3)$y=f(x)$のグラフが傾き$1$の接線をちょうど$2$本持つための条件を,実数の組$(a,\ b)$を座標平面上に図示することで与えよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第4問
座標空間に立方体$K$があり,原点$\mathrm{O}$と$3$点$\mathrm{A}(a,\ b,\ 0)$,$\mathrm{B}(r,\ s,\ t)$,$\mathrm{C}(3,\ 0,\ 0)$が次の条件をみたしている.

(i) $\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$は立方体$K$の辺である.
(ii) $\mathrm{OC}$は立方体$K$の辺ではない.
(iii) $b>0,\ t>0$

このとき,以下の問いに答えよ.

(1)立方体$K$の一辺の長さ$l$を求めよ.
(2)点$\mathrm{A}$の座標を求めよ.
(3)点$\mathrm{B}$の座標を求めよ.
(4)辺$\mathrm{AB}$上の点$\mathrm{P}$から$x$軸に下ろした垂線の足を$\mathrm{H}(x,\ 0,\ 0)$とする.$\mathrm{PH}$の長さを$x$を用いて表せ.
(5)立方体$K$を$x$軸を回転軸として$1$回転させて得られる回転体の体積$V$を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に$2$つの曲線$C_1:y=-x^2+12$,$C_2:y=x^2-10x+29$がある.曲線$C_1$上を動く点$\mathrm{P}$の$x$座標を$a$とし,曲線$C_1$の点$\mathrm{P}$における接線を$\ell$とする.ただし,$a>0$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸,$y$軸で囲まれた三角形の面積を$S$とする.$S$を$a$を用いて表せ.また,$S$の最小値とそのときの$a$の値を求めよ.
(3)接線$\ell$と曲線$C_2$が$2$個の共有点をもつような$a$の値の範囲を求めよ.
(4)接線$\ell$と曲線$C_2$が$2$個の共有点をもつとき,それらの中点の軌跡を求めよ.
帯広畜産大学 国立 帯広畜産大学 2014年 第2問
関数$f(x)$を$\displaystyle f(x)=-7+k \int_0^6 |x-u| \, du$と定義する.ただし,$k$は定数,$f(3)=-5$である.次の各問に答えなさい.

(1)$k$の値を求めなさい.
(2)$y=f(x)$のグラフの概形を図示しなさい.
(3)実数$s,\ t$が条件$0 \leqq s \leqq 20$,$0 \leqq t \leqq 20$を満たしながら動くとき,$xy$座標平面上の点
\[ \mathrm{P} \left( \frac{1}{2}s+\frac{1}{10}t,\ -\frac{1}{4}s-\frac{1}{5}t \right) \]
が動く領域$D$を求めなさい.
(4)不等式$y \geqq f(x)$の表す領域を$E$とするとき,領域$E$と領域$D$の共通部分の面積を求めなさい.
佐賀大学 国立 佐賀大学 2014年 第3問
放物線$C:y=x^2$と,それと共有点をもたない直線$\ell:y=ax+b$を考える.直線$\ell$上の点$\mathrm{P}$から放物線$C$に相異なる$2$本の接線を引き,その接点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{Q}$,$\mathrm{R}$の座標をそれぞれ$(\alpha,\ \alpha^2)$,$(\beta,\ \beta^2)$とおく.点$\mathrm{P}$の$x$座標を$\alpha,\ \beta$で表せ.
(2)直線$\mathrm{QR}$は点$\mathrm{P}$を$\ell$上どのようにとっても,定点を通ることを証明せよ.
宮崎大学 国立 宮崎大学 2014年 第5問
不等式
\[ \log_x y<2+3 \log_y x \]
の表す領域を座標平面上に図示せよ.
鹿児島大学 国立 鹿児島大学 2014年 第4問
次の各問いに答えよ.

(1)$\theta$を媒介変数として,
\[ \left\{ \begin{array}{l}
x=\theta-\sin \theta \\
y=1-\cos \theta
\end{array} \right. \]
で表される曲線の$\displaystyle \theta=\frac{\pi}{2}$に対応する点における接線の方程式を求めよ.
(2)$2$つの曲線$y=e^{-x}+1$,$y=3(e^{-x}-1)$の交点の座標を求めよ.ただし,$e$は自然対数の底とする.
(3)$(2)$の$2$曲線と$y$軸で囲まれた図形を$D$とする.$D$の面積を求めよ.
(4)$(3)$で与えられた$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第5問
次の各問いに答えよ.

(1)座標平面上での原点を中心とする${150}^\circ$の回転移動を表す行列を$P$とする.点$(x,\ y)$が$P$の表す移動によって,点$(2,\ 4)$に移ったとする.このとき,点$(x,\ y)$を求めよ.
(2)$(1)$で与えられた行列$P$を考える.$P^n=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たす最小の自然数$n$を求めよ.
(3)以下の各命題の反例をあげよ.また,反例になっていることを示せ.ただし,$X,\ Y$は$2$次の正方行列とする.

(i) $XY=YX$が成立する.
(ii) $XY=O$ならば,$X=O$または$Y=O$である.ただし,$O$は$2$次の零行列を表す.
(iii) $A$を逆行列$A^{-1}$をもつ$2$次の正方行列とする.このとき,$AX=Y$ならば,$X=YA^{-1}$である.
鹿児島大学 国立 鹿児島大学 2014年 第6問
$c$と$d$を$0$ではない実数とする.$C$と$D$をそれぞれ$s$と$t$を媒介変数として
\[ C: \left\{ \begin{array}{l}
x=\displaystyle\frac{c}{s^2+c^2} \\ \\
y=\displaystyle\frac{s}{s^2+c^2}
\end{array} \right. \quad D: \left\{ \begin{array}{l}
x=\displaystyle\frac{t}{t^2+d^2} \\ \\
y=\displaystyle\frac{d}{t^2+d^2}
\end{array} \right. \]
で与えられる曲線とする.このとき,次の各問いに答えよ.

(1)$C$と$D$は円から$1$点を除いた曲線になっている.それぞれの円を表す方程式と除かれる点を求めよ.
(2)$C$と$D$の交点の座標を求めよ.
(3)$C$と$D$の交点における$C$の接線の方程式を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。