タグ「座標」の検索結果

59ページ目:全2097問中581問~590問を表示)
名古屋市立大学 公立 名古屋市立大学 2015年 第1問
点$\displaystyle \mathrm{A} \left( -1,\ \frac{1}{2} \right)$および放物線$\displaystyle C:y=\frac{x^2}{2}$を考える.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.ただし,$m$は正である.次の問いに答えよ.

(1)$C$と$\ell$の交点の座標を$m$で表せ.
(2)第$2$象限において$C$,$\ell$および$x$軸で囲まれる図形の面積$S(m)$を求めよ.
(3)$C$と$\ell$で囲まれた図形の面積を$T(m)$とする.$\displaystyle \frac{T(m)}{mS(m)}=18$となる$m$に対し,$\displaystyle \frac{n}{10}<m<\frac{n+1}{10}$を満たす自然数$n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第1問
点$\displaystyle \mathrm{A} \left( -1,\ \frac{1}{2} \right)$および放物線$\displaystyle C:y=\frac{x^2}{2}$を考える.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.ただし,$m$は正である.次の問いに答えよ.

(1)$C$と$\ell$の交点の座標を$m$で表せ.
(2)第$2$象限において$C$,$\ell$および$x$軸で囲まれる図形の面積$S(m)$を求めよ.
(3)$C$と$\ell$で囲まれた図形の面積を$T(m)$とする.$\displaystyle \frac{T(m)}{mS(m)}=18$となる$m$に対し,$\displaystyle \frac{n}{10}<m<\frac{n+1}{10}$を満たす自然数$n$を求めよ.
札幌医科大学 公立 札幌医科大学 2015年 第4問
次の問いに答えよ.

(1)次の不定積分を求めよ.

\mon[$①$] $\displaystyle \int t \sin t \, dt$
\mon[$②$] $\displaystyle \int t^2 \cos t \, dt$

座標平面の原点を$\mathrm{O}$とする.点$\mathrm{A}(0,\ 1)$を中心とし半径$1$の円$C$上の$x \geqq 0$の範囲にある点$\mathrm{P}(x_p,\ y_p)$に対して,線分$\mathrm{OP}$と$x$軸の正の部分とのなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とする.また,$\mathrm{P}$における$C$の接線上に点$\mathrm{Q}(x_q,\ y_q)$を次の条件をみたすようにとる.
\begin{itemize}
$y_q \leqq y_p$
線分$\mathrm{PQ}$の長さは,$C$上の弧$\mathrm{OP}$(ただし弧全体が$x \geqq 0$に存在する方)の長さに等しい
$\mathrm{P}$の座標が$(0,\ 2)$のときは$x_q=\pi$となるように$\mathrm{Q}$をとる
$\mathrm{P}$が$\mathrm{O}$と一致する場合は$\mathrm{Q}$も$\mathrm{O}$とし,$\theta=0$とする
\end{itemize}
(2)$\mathrm{P}$の座標を$\theta$を用いて表せ.
(3)$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(4)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$y_q$の最大値と最小値を求めよ.
(5)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{Q}$の描く曲線と$y$軸および直線$y=2$で囲まれる部分の面積を求めよ.
会津大学 公立 会津大学 2015年 第5問
関数$y=xe^{-x}$のグラフを$C$とするとき,以下の問いに答えよ.

(1)関数$y=xe^{-x}$の増減,極値,$C$の凹凸,変曲点を調べて,増減表をつくり,$C$を座標平面上に描け.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$を用いてもよい.
(2)$C$の変曲点における接線を$\ell$とする.$\ell$と$x$軸の交点を求めよ.
(3)$C$と$\ell$と$x$軸で囲まれた部分の面積を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第1問
$f(x)=x^3+ax^2+bx+c$とし,$a,\ b,\ c$は実数とする.$y=f(x)$によって表される曲線を$C$とおく.$C$は$x$軸と点$(-1,\ 0)$でのみ交わるとする.さらに,$C$の接線で傾きが$-1$のものがただ一つ存在するとし,それを$\ell$とする.

(1)$f^\prime(-1)>0$となることを示せ.
(2)$a$の値の範囲を求めよ.
(3)$C$と$\ell$の接点の$x$座標が$1$であるとき,$C$と$\ell$と$x$軸で囲まれる部分の面積を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第3問
$xyz$空間の原点を$\mathrm{O}$とし,点$(0,\ 0,\ 1)$と点$(\sqrt{3},\ 1,\ 1)$を通る直線を$\ell$とする.点$\mathrm{P}$は,時刻$t=0$のとき$(-4,\ 0,\ 0)$にあって,$x$軸上を正の向きに速さ$1$で動いている.点$\mathrm{Q}$は,$t=0$のとき$(0,\ 0,\ 1)$にあって,直線$\ell$上を$x$座標が増えるように速さ$2$で動いている.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$の式で表せ.
(2)三角形$\mathrm{OPQ}$の面積$S$を$t$の式で表せ.
(3)$-0.33 \leqq t \leqq 2.6$のときの$S$の最大値と最小値,およびそれらをとる$t$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第3問
実数$a,\ b$を定数とし,関数$f(x)=(1-2a)x^2+2(a+b-1)x+1-b$を考える.次の問に答えなさい.

(1)すべての実数$x$に対して$f(x) \geqq 0$が成り立つような実数の組$(a,\ b)$の範囲を求め,座標平面上に図示しなさい.
(2)$0 \leqq x \leqq 1$を満たす,すべての実数$x$に対して$f(x) \geqq 0$が成り立つような実数の組$(a,\ b)$の範囲を求め,座標平面上に図示しなさい.
大阪府立大学 公立 大阪府立大学 2015年 第4問
実数全体を定義域とする関数$f(x),\ g(x)$をそれぞれ
\[ f(x)=e^x,\quad g(x)=\frac{e^{x+1}+e^{-x-1}}{2} \]
で定める.曲線$y=f(x)$上の点$(t,\ e^t)$における法線に関して,直線$x=t$を対称移動した直線を$\ell$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$は曲線$y=g(x)$に接することを示し,その接点の$x$座標を求めよ.
(3)$(2)$で求めた接点を$\mathrm{P}$とする.$\ell$と曲線$y=f(x)$,および$\mathrm{P}$を通り$y$軸に平行な直線で囲まれた部分の面積を$S(t)$とする.$t$が実数全体を動くとき,$S(t)$の最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第4問
$a,\ b,\ p,\ q$を実数の定数(ただし$a<b$)とする.$2$次方程式
\[ (*) \quad x^2-px+q=0 \]
について以下の問いに答えよ.

(1)$(*)$が実数解をもち,それらがともに$a$以上$b$以下であるための必要十分条件を$p,\ q$についての連立不等式で表せ.
(2)$(1)$で導いた$p,\ q$についての連立不等式を満たす座標平面上の点$(p,\ q)$全体の集合を$D$とするとき,$a,\ b$を用いて$D$の面積を表せ.
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。