タグ「座標」の検索結果

49ページ目:全2097問中481問~490問を表示)
東京理科大学 私立 東京理科大学 2015年 第3問
原点を$\mathrm{O}$とする座標平面において点$\mathrm{R}(a,\ b) (a>0,\ b>0)$をとる.$x$軸の正の部分に点$\mathrm{P}$を,$y$軸の正の部分に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{R}$を通るようにとる.以下,$\displaystyle \angle \mathrm{OPQ}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$とおく.

(1)線分$\mathrm{PQ}$の長さを,$\theta$および$a,\ b$を用いて表しなさい.
(2)線分$\mathrm{PQ}$の長さを最小にする角$\theta$に対して,$\tan \theta$および線分$\mathrm{PQ}$の長さを$a,\ b$を用いて表しなさい.
(3)$a=1$,$b=8$とする.三角形$\mathrm{OPQ}$の$3$辺の長さの和を最小にする角$\theta$に対して,$\tan \theta$の値および線分$\mathrm{PQ}$の長さを求めなさい.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
早稲田大学 私立 早稲田大学 2015年 第5問
曲線$C:y=x^3$上に,次のようにして点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$,$\mathrm{P}_n$,$\cdots$をとる.

(i) $\mathrm{P}_1$は$C$上の与えられた点とする.
(ii) $\mathrm{P}_n$を通り,$\mathrm{P}_n$とは異なる点で$C$と接する直線が$1$つだけ存在するとき,その直線を$\ell_n$とし,$\ell_n$と$C$との接点を$\mathrm{P}_{n+1}$とする.もしこのような直線$\ell_n$が存在しない場合には$\mathrm{P}_{n+1}$は$\mathrm{P}_n$と同一の点とする.

点$\mathrm{P}_n$の$x$座標を$x_n$とするとき,次の問に答えよ.


(1)直線$\ell_n$が存在する場合$\displaystyle x_{n+1}=\frac{[ト]}{[ナ]}x_n$である.

(2)$\mathrm{P}_1$を原点とするとき$\displaystyle \lim_{n \to \infty}x_n=[ニ]$である.
(3)$\mathrm{P}_1$を点$(2,\ 8)$とするとき$\displaystyle \lim_{n \to \infty}x_n=[ヌ]$である.
早稲田大学 私立 早稲田大学 2015年 第1問
次の各問に答えよ.

(1)整式$P(x)$を$(x-1)(x-4)$で割ると余りは$43x-35$であり,$(x-2)(x-3)$で割ると余りは$39x-55$であるという.このとき,$P(x)$を
\[ (x-1)(x-2)(x-3)(x-4) \]
で割ったときの余りを求めよ.
(2)座標平面に$4$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$,$\mathrm{C}(-1,\ 1)$,$\mathrm{D}(-1,\ -1)$がある.実数$x$が$0 \leqq x \leqq 1$の範囲にあるとき,$2$点$\mathrm{P}(x,\ 0)$,$\mathrm{Q}(-x,\ 0)$を考える.このとき,$5$本の線分の長さの和
\[ \mathrm{AP}+\mathrm{BP}+\mathrm{PQ}+\mathrm{CQ}+\mathrm{DQ} \]
が最小となるような$x$の値を求めよ.ただし,$x=0$のときは$\mathrm{PQ}=0$とする.
(3)$1$から$10$までの自然数からなる集合$\{1,\ 2,\ \cdots,\ 10\}$の中から異なる$3$つの数を選ぶとする.このとき,選んだ数の和が$3$で割り切れる確率を求めよ.
(4)座標平面において楕円$\displaystyle E:\frac{x^2}{a}+y^2=1$を考える.ただし,$a$は$a>0$をみたす定数とする.楕円$E$上の点$\mathrm{A}(0,\ 1)$を中心とする円$C$が,次の$2$つの条件をみたしているとする.

(i) 楕円$E$は円$C$とその内部に含まれ,$E$と$C$は$2$点$\mathrm{P}$,$\mathrm{Q}$で接する.
(ii) $\triangle \mathrm{APQ}$は正三角形である.

このとき,$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
次の問いに答えよ.

(1)$\cos 3 \theta$を$\cos \theta$のみの式で表せ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $3$次関数$\displaystyle f(x)=x^3-\frac{3}{4}x$について増減表を書き,$y=f(x)$のグラフの概形を描け.
(ii) $y=f(x)$のグラフと直線$y=k$が共有点を$2$つまたは$3$つもつような定数$k$の値の範囲を求めよ.
また,$k$がこの範囲を動くとき,共有点の$x$座標のとる値の範囲を求めよ.

(3)$3$次方程式$\displaystyle x^3-\frac{3}{4}x-\frac{1}{8}=0$の解を$x=\cos \theta (0 \leqq \theta \leqq \pi)$とおくとき,$\theta$の値を求めよ.
東北学院大学 私立 東北学院大学 2015年 第3問
放物線$C:y=x^2-x$について以下の問いに答えよ.ただし$a>0$とする.

(1)点$(0,\ -a)$を通る$C$の$2$つの接線の方程式およびそれぞれの接点の座標を求めよ.
(2)$(1)$で求めた$2$つの接点を通る直線および$C$で囲まれた部分の面積を求めよ.
(3)$(1)$で求めた$2$つの接線および$C$で囲まれた部分の面積を求めよ.
広島工業大学 私立 広島工業大学 2015年 第4問
放物線$y=x^2+ax+b$と$x$軸との交点の座標は$(\sin \theta,\ 0)$,$(\sqrt{3} \cos \theta,\ 0)$である.この放物線と$x$軸とで囲まれる部分の面積を$S$とするとき,次の問いに答えよ.ただし,$a,\ b$は定数とし,$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$とする.

(1)$a,\ b$を$\theta$を用いて表せ.
(2)$a=0$のとき,$S$の値を求めよ.
(3)$S$の最大値を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第1問
関数$f(x)=\sqrt{7x-3}-1$について考える.

(1)$f(x)$の逆関数は$\displaystyle f^{-1}(x)=\frac{[ア]}{[イ]}(x^2+[ウ]x+[エ]) (x \geqq [オカ])$である.
(2)曲線$y=f(x)$と直線$y=x$との交点の座標は$([キ],\ [ク])$,$([ケ],\ [コ])$である.ただし,$[キ]<[ケ]$とする.
(3)不等式$f^{-1}(x) \leqq f(x)$の解は$[サ] \leqq x \leqq [シ]$である.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。