タグ「座標」の検索結果

46ページ目:全2097問中451問~460問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}(0,\ 0)$と点$\mathrm{A}(0,\ 2)$を通る$2$円
\[ C_1:(x+1)^2+(y-1)^2=2,\quad C_2:(x-2)^2+(y-1)^2=5 \]
が与えられている.原点$\mathrm{O}$を通る直線$L$と$C_1$,$C_2$との交点($\neq \mathrm{O}$)をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{D} \neq \mathrm{E}$のとき,線分$\mathrm{DE}$の内点$\mathrm{P}$を$\mathrm{DP}:\mathrm{PE}=3:1$となるようにとる.$\mathrm{D}=\mathrm{E}$のとき,$\mathrm{P}=\mathrm{D}$とする.直線$L$を原点を中心に回転させると,点$\mathrm{P}$は
\[ \left( \frac{[$13$][$14$]}{[$15$][$16$]},\ [$17$][$18$] \right) \]
を中心とする円周上にある.
(2)$\displaystyle \frac{\pi}{12}$における$\sin,\ \cos$の値は
\[ \begin{array}{l}
\displaystyle\sin \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}-\sqrt{[$21$][$22$]}}{4} \\
\displaystyle\cos \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}+\sqrt{[$21$][$22$]}}{4} \phantom{\displaystyle\frac{\frac{[ ]^2}{2}}{2}}
\end{array} \]
である.これを用いて,$0<x<\pi$の範囲で方程式
\[ \frac{\sqrt{3}+1}{\cos x}-\frac{\sqrt{3}-1}{\sin x}-4 \sqrt{2}=0 \]
を解けば
\[ x=\frac{[$23$][$24$]}{[$25$][$26$]}\pi \]
を得る.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
立教大学 私立 立教大学 2015年 第2問
座標平面上に$2$つの放物線$C_1:y=x^2$と$C_2:y=ax^2+bx+c (a \neq 0)$がある.この$2$つの放物線$C_1$と$C_2$が$x=-1$で交わり,その点で各々の接線が直交するとき,次の問に答えよ.

(1)$b,\ c$をそれぞれ$a$を用いて表せ.
(2)$2$つの放物線$C_1$と$C_2$が,さらに$\displaystyle x=\frac{1}{4}$で交わるときの$a$の値を求めよ.
(3)$a$を$(2)$で求めた値とするとき,放物線$C_2$の$x=-1$での接線$\ell_1$,$\displaystyle x=\frac{1}{4}$での接線$\ell_2$と$C_2$で囲まれた図形の面積$S$を求めよ.
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$点$\mathrm{P}$,$\mathrm{Q}$を$\mathrm{P}(-1,\ 2)$,$\mathrm{Q}(1,\ 2)$とする.点$\mathrm{A}$が点$(1,\ 0)$から出発し,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円周$C$上を次のルールで動くとする.

【ルール】
\begin{itemize}
$1$個のさいころを$1$回投げて$1$回の試行とする.
$a$の目が出たら,反時計回りに$a \times {30}^\circ$回転する.
\end{itemize}

このとき,次の問に答えよ.

(1)三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となるような$\mathrm{A}$の座標をすべて求めよ.
(2)三角形$\mathrm{PQA}$が直角三角形となるような$\mathrm{A}$の座標をすべて求めよ.
(3)$2$回の試行を行う.$2$回の試行の後,三角形$\mathrm{PQA}$が直角三角形となる確率を求めよ.
(4)$3$回の試行を行う.$3$回の試行の後,三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となる確率を求めよ.
中央大学 私立 中央大学 2015年 第3問
関数$f(x)=|x^2-2x-3|-x$について,以下の問いに答えよ.

(1)$y=f(x)$のグラフと$x$軸との共有点の$x$座標をすべて求めよ.
(2)関数$f(x)$の$0 \leqq x \leqq 4$における最大値および最小値を求めよ.
中央大学 私立 中央大学 2015年 第3問
曲線$C_1:y=x^3$を考える.点$\mathrm{A}(-1,\ -1)$における$C_1$の接線$\ell$は,$\mathrm{A}$とは異なる点$\mathrm{B}$で$C_1$と交わっている.このとき,以下の設問に答えよ.ただし
\[ \int x^3 \, dx=\frac{x^4}{4}+L \quad (L \text{は積分定数}) \]
である.

(1)点$\mathrm{B}$の座標を求めよ.
(2)実数の定数$a,\ b,\ c$に対し,曲線$C_2:y=ax^2+bx+c$を考える.$C_2$が点$\mathrm{A}$,$\mathrm{B}$を通り,さらに$\mathrm{A}$と$\mathrm{B}$との間の点$\mathrm{E}$($\mathrm{E} \neq \mathrm{A},\ \mathrm{E} \neq \mathrm{B}$)で$C_1$と交わるとき,$c$が満たす必要十分条件を求めよ.
(3)$C_2$および$\mathrm{E}$は前問と同様とし,$c$は前問の必要十分条件を満たしている.「$\mathrm{A}$,$\mathrm{E}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_1$,「$\mathrm{E}$,$\mathrm{B}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_2$とする.$S_1=S_2$であるとき,$c$の値を求めよ.
上智大学 私立 上智大学 2015年 第2問
座標平面上で$2$つのベクトル
\[ \overrightarrow{p}=(p,\ 0),\quad \overrightarrow{q}=(q,\ 0) \]
を考える.ただし,$0<p<1$,$q>1$とする.$\overrightarrow{x}$を単位ベクトルとして,以下の問に答えよ.

(1)任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{p}$は直交しないことを示せ.
(2)$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,$|\overrightarrow{x}-\overrightarrow{q}|$を$q$を用いて表せ.
(3)$\overrightarrow{p},\ \overrightarrow{q}$が次の条件をみたすとする.
条件:任意の$\overrightarrow{x}$について$|\overrightarrow{x}-\overrightarrow{p}|:|\overrightarrow{x}-\overrightarrow{q}|=1:2$となる.

(i) $p$および$q$の値を求めよ.
(ii) $\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,原点を始点として$\overrightarrow{x}$,$\overrightarrow{p}$,$\overrightarrow{q}$を図示せよ.
(iii) 実数$a$に対して,
\[ \overrightarrow{s}=\frac{\overrightarrow{x}-\overrightarrow{p}}{|\overrightarrow{x}-\overrightarrow{p}|^3}-a \frac{\overrightarrow{x}-\overrightarrow{q}}{|\overrightarrow{x}-\overrightarrow{q}|^3} \]
とおく.任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{s}$が平行となるときの$a$の値を求めよ.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$3S_n=a_n+2n-1$を満たすならば,
\[ a_n=\frac{[ア]}{[イ]} \left( \frac{[ウ]}{[エ]} \right)^n+\frac{[オ]}{[カ]} \]
である.
(2)$t$を実数とする.座標空間において,点$(2t,\ 1,\ -t)$を通りベクトル$(-1,\ 2,\ 1)$と平行な直線を$\ell$とする.点$\mathrm{P}$の座標を$(0,\ 2,\ 0)$とする.

(i) 点$\mathrm{P}$から$\ell$に垂線$\mathrm{PH}$を下ろすとき,
\[ \mathrm{PH}^2=\frac{[キ]}{[ク]}t^2+[ケ]t+\frac{[コ]}{[サ]} \]
である.
(ii) 点$\mathrm{P}$を中心とする半径$2$の球面を$S$とする.$S$と$\ell$が異なる$2$点で交わるとき,その$2$点間の距離は$\displaystyle t=\frac{[シ]}{[ス]}$のとき最大値をとる.
上智大学 私立 上智大学 2015年 第2問
$f(x)=x^3-3x^2-x+3$とし,座標平面上の曲線$y=f(x)$の点$\mathrm{P}(p,\ f(p))$における接線を$\ell$とする.ただし,$p \neq 3$とする.放物線$C:y=ax^2+bx+c$は点$(3,\ 0)$を通り,直線$\ell$と$\mathrm{P}$で接する.

(1)$a,\ b,\ c$をそれぞれ$p$の式で表すと,
\[ a=[セ]p,\ b=[ソ]p^2+[タ]p+[チ],\ c=[ツ]p^2+[テ] \]
である.
(2)$\displaystyle \frac{1}{2}<p<3$とする.$C$およびその下側の部分で,$C$と直線$\displaystyle x=\frac{1}{2}$および$x$軸で囲まれる図形の面積を$S_1$とおき,$C$およびその上側の部分で,$C$と$x$軸で囲まれる図形の面積を$S_2$とおく.このとき,
\[ S_1-S_2=\frac{25}{24}\left( [ト]p^2+[ナ]p+[ニ] \right) \]
であり,$S_1=S_2$となる$p$の値は
\[ p=\frac{[ヌ]}{[ネ]}+\frac{\sqrt{[ノ]}}{[ハ]} \]
である.
(3)$p=1$のとき,
\[ S_1+S_2=\frac{[ヒ]}{[フ]} \]
である.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)座標平面上の放物線
\[ y={(x-29)}^2-3600 \]
と$x$軸の共有点の$x$座標は$[ア]$と$[イ]$である.ただし$[ア]<[イ]$とする.
(2)$x+y=1$かつ$0<x<1$を満たす実数$x,\ y$に対して
\[ A=\frac{1}{x}+\frac{1}{y},\quad B=\left( 1+\frac{1}{x^2} \right) \left( 1+\frac{1}{y^2} \right) \]
とおく.

(i) $A$のとり得る値の最小値は$[ウ]$である.
(ii) すべての$x,\ y$に対して
\[ B=[エ]A^2+[オ]A+[カ] \]
が成り立つ.
(iii) $B$のとり得る値の最小値は$[キ]$である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。