タグ「座標」の検索結果

39ページ目:全2097問中381問~390問を表示)
愛知教育大学 国立 愛知教育大学 2015年 第6問
$xy$平面において,点$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円を$C$とする.円$C$上に原点$\mathrm{O}$とは異なる点$\mathrm{P}$を取り,直線$\mathrm{OP}$と直線$y=1$の交点を$\mathrm{Q}$とする.また,$x$座標が$\mathrm{Q}$と同じで,$y$座標が$\mathrm{P}$と同じである点を$\mathrm{R}$とする.

(1)点$\mathrm{P}$が円$C$上の原点$\mathrm{O}$とは異なる点全体を動くとき,点$\mathrm{R}$の軌跡の方程式を求めよ.
(2)$(1)$で求めた曲線と$x$軸および$2$直線$x=0$,$x=1$で囲まれた図形の面積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第2問
$e$を自然対数の底とする.$xy$平面上で,曲線$y=e^{2x}$の,点$(t,\ e^{2t})$における接線を$\ell_t$とし,点$(s,\ e^{2s})$における接線を$\ell_s$とする.$\ell_s$の傾きが$\ell_t$の傾きの$e$倍に等しいとする.

(1)$\ell_t$と$\ell_s$の交点の座標を$t$を用いて表せ.
(2)$\ell_s$を,$y$軸に関して対称移動して得られる直線を$L$とする.$L$と直線$x=t$との交点を$\mathrm{P}_t$とする.$\mathrm{P}_t$の$y$座標を$t$を用いて表せ.
(3)$a$を正の実数とする.$t$が$0 \leqq t \leqq a$の範囲を動くとき,$(2)$で定めた点$\mathrm{P}_t$が描く曲線を$C$とする.$C$と$x$軸および直線$x=a$とで囲まれた図形の面積を求めよ.
茨城大学 国立 茨城大学 2015年 第2問
座標平面上の相異なる$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$2$つの条件
\[ \left\{ \begin{array}{l}
|\overrightarrow{\mathrm{PQ}}|=|\overrightarrow{\mathrm{QR}}| \\
\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=-\displaystyle\frac{1}{3} \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \cdots\cdots (*) \]
を満たしながら動くものとする.$|\overrightarrow{\mathrm{PQ}}|$を$a$とする.以下の各問に答えよ.

(1)$|\overrightarrow{\mathrm{PR}}|$を$a$で表せ.
(2)$\displaystyle \angle \mathrm{PQR}=\frac{2}{3} \pi$のときの$a$を求めよ.また,$\angle \mathrm{PQR}=\pi$のときの$a$を求めよ.
(3)$a$がとり得る値の範囲を求めよ.
(4)原点を$\mathrm{O}$とし,点$\mathrm{R}$を$(1,\ 0)$に固定する.点$\mathrm{P}$,$\mathrm{Q}$が$(*)$および
\[ |\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{PQ}}| \]
を満たしながら動くとする.点$\mathrm{P}$が描く軌跡を求めよ.
(5)$(4)$において,点$\mathrm{P}$が描く軌跡の長さを求めよ.
茨城大学 国立 茨城大学 2015年 第3問
曲線$C_1:y=\log x (x>0)$と曲線$C_2:y=-x^2+a$を考える.ただし,$\log$は自然対数を表す.以下の各問に答えよ.

(1)曲線$C_1$上の点$\mathrm{P}(t,\ \log t)$における法線$\ell$の方程式を求めよ.ただし,曲線上の点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,点$\mathrm{P}$における接線に垂直に交わる直線のことである.
(2)$(1)$で求めた法線$\ell$と曲線$C_2$が接するとき,$a$の値を$t$を用いて表せ.また,$C_2$と$\ell$が接する点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$を通り$y$軸に平行な直線,点$\mathrm{P}$を通り$y$軸に平行な直線,$x$軸,および曲線$C_1$で囲まれた図形の面積$S(t)$を求めよ.
(4)$(3)$で求めた$S(t)$の極値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2015年 第2問
関数$f(x)=ax^2+bx+c$を用いて,関数$g(x)$が
\[ g(x)=\left\{ \begin{array}{ll}
-ax^2+1 & \displaystyle\left( x<\frac{\sqrt{a}}{a} \right) \\
f(x) & \displaystyle\left( x \geqq \frac{\sqrt{a}}{a} \right) \phantom{\frac{[ ]^{\mkakko{}}}{2}}
\end{array} \right. \]
で定義されている.ただし,$a,\ b,\ c$は定数で,$a>0$とする.次の各問に答えなさい.

(1)関数$f(x)$の導関数を求めなさい.
(2)曲線$C_1:y=f(x)$は点$\displaystyle \left( \frac{\sqrt{a}}{a},\ 0 \right)$を通り,この点における曲線$C_1$の接線の傾きは$-2 \sqrt{a}$であるとする.

(i) $b$を$a$の式で表しなさい.また,$c$の値を求めなさい.
(ii) 関数$g(x)$が$x=4$で極小になるように,$a$の値を定めなさい.

(3)曲線$C_2:y=g(x)$は$2$点$(2,\ -1)$,$(3,\ 0)$を通る.また,曲線$C_2$と直線$L:y=tx$で囲まれる部分の面積を$t$の関数として$S(t)$で表す.ただし,$a=1$,$0 \leqq t \leqq 2$とする.このとき,$S(t)$の導関数の値は正である.

(i) $b,\ c$の値をそれぞれ求めなさい.
(ii) $S(t)$の最小値を求めなさい.
(iii) $S(t)$が最大値をとるとき,曲線$C_2$と直線$L$のすべての交点の座標を求めなさい.また,$S(t)$の最大値を求めなさい.
愛知教育大学 国立 愛知教育大学 2015年 第3問
$xy$平面上の曲線$C_1:y=x^2$を考える.$C_1$上に異なる$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$をとり,点$\mathrm{A}$における$C_1$の接線と点$\mathrm{B}$における$C_1$の接線の交点を$\mathrm{P}$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$の内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$を$a,\ b$を用いて表せ.
(3)$(1)$で求めた点$\mathrm{P}$が,$xy$平面上の曲線$C_2:y=x^2-x (0<x<1)$上にあるとする.このとき,$(1)$で求めた点$\mathrm{P}$の$x$座標を$s$とおき,$(2)$で求めた内積を$s$で表せ.
(4)内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$を最大にする$C_2$上の点$\mathrm{P}$の座標を求めよ.
$*$ \ $(2)$~$(4)$については,必答範囲外からの出題のため,技術・情報科学の受験者全員に対し,正解とする.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
秋田大学 国立 秋田大学 2015年 第3問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
岩手大学 国立 岩手大学 2015年 第2問
座標平面上に$2$点$\mathrm{A}(3,\ 2)$,$\mathrm{B}(1,\ 3)$をとる.$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{X}$,$\ell$と$y$軸との交点を$\mathrm{Y}$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{AX}:\mathrm{AY}$をできるだけ簡単な整数比で表せ.
(3)$\mathrm{PX}:\mathrm{PY}=\mathrm{AX}:\mathrm{AY}$を満たすような点$\mathrm{P}(x,\ y)$の軌跡の方程式を求めよ.
(4)点$\mathrm{P}(x,\ y)$が,$(3)$で求めた軌跡上を動くとき,$2x+y$の最大値および最小値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。