タグ「座標」の検索結果

37ページ目:全2097問中361問~370問を表示)
山梨大学 国立 山梨大学 2015年 第3問
座標平面上の放物線$\displaystyle y=\frac{x^2}{2}+\frac{5}{2}$を$C$とし,$a$を$2$より小さい実数とする.点$\mathrm{A}(a,\ a)$から$C$に引いた異なる$2$つの接線の接点を各々$\displaystyle \mathrm{P} \left( p,\ \frac{p^2}{2}+\frac{5}{2} \right)$,$\displaystyle \mathrm{Q} \left( q,\ \frac{q^2}{2}+\frac{5}{2} \right)$とする.ただし,$p<q$とする.

(1)$p$および$q$を$a$を用いて表せ.
(2)$\displaystyle \theta=\angle \mathrm{PAQ} \ \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,$\tan \theta$を$a$を用いて表せ.
(3)$a=1$のとき,$\triangle \mathrm{PAQ}$の外接円の半径$R$を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第5問
$a$を定数とする.$2$曲線

$\displaystyle C_1:y=-\frac{3}{2} \cos 2x \quad (0<x<2\pi)$
$\displaystyle C_2:y=a \cos x-a-\frac{3}{4} \quad (0<x<2\pi)$

を考える.$C_1$と$C_2$は共有点をもち,ある共有点での$C_1$と$C_2$の接線は一致し,かつその傾きは$0$でないとする.次の問に答えよ.

(1)$a$の値を求めよ.
(2)$C_1$と$C_2$の概形を同一座標平面上にかけ.
(3)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
東京学芸大学 国立 東京学芸大学 2015年 第4問
次の$(1),\ (2)$から$1$題を選択し解答せよ.

(1)等式$\displaystyle |\displaystyle\frac{i|{z}-1}=|\displaystyle\frac{1|{z}-k}$を満たすすべての複素数$z$に対して不等式$|z| \leqq 2$が成り立つような実数$k$の値の範囲を求めよ.
(2)実数$k$と$2$次の正方行列$A$は$A^2-kA+3E=O$を満たすとする.また,座標平面上で$A$の表す移動によって,点$(1,\ 1)$は点$(3,\ 3)$へ移り,直線$y=-x$上の点は同じ直線上の点に移るとする.このとき,$A$を求めよ.ただし,$E$は単位行列,$O$は零行列を表す.
鳴門教育大学 国立 鳴門教育大学 2015年 第5問
数直線上で,点$\mathrm{P}$は原点$\mathrm{O}$を出発点とし,さいころを投げて偶数の目が出たときは正の方向へ$1$だけ進み,奇数の目が出たときは負の方向へ$1$だけ進むものとします.$k$回さいころを投げた後の,点$\mathrm{P}$の位置の座標を$X(k)$とするとき,次の確率を求めなさい.

(1)$X(1),\ X(2),\ \cdots,\ X(6)$のうち最も大きな数が$3$である確率
(2)$X(1),\ X(2),\ \cdots,\ X(6)$のうち最も大きな数が$3$以下である確率
三重大学 国立 三重大学 2015年 第3問
関数$f(x)={|x-2|}^3-3x^2+12x$がある.以下の問いに答えよ.

(1)$f(x)$の増減を調べ,グラフの概形を描け.
(2)曲線$y=f(x)$と直線$y=12$の共有点の$x$座標を求めよ.
(3)曲線$y=f(x)$と直線$y=12$で囲まれた図形の面積を求めよ.
[補足説明] \ 必要ならば,自然数$n$に対して
\[ \int x^n \, dx=\frac{x^{n+1}}{n+1}+C \quad (C \text{は積分定数}) \]
となることを用いてよい.
三重大学 国立 三重大学 2015年 第3問
関数$f(x)={|x-2|}^3-3x^2+12x$がある.以下の問いに答えよ.

(1)$f(x)$の増減を調べ,グラフの概形を描け.
(2)曲線$y=f(x)$と直線$y=12$の共有点の$x$座標を求めよ.
(3)曲線$y=f(x)$と直線$y=12$で囲まれた図形の面積を求めよ.
[補足説明] \ 必要ならば,自然数$n$に対して
\[ \int x^n \, dx=\frac{x^{n+1}}{n+1}+C \quad (C \text{は積分定数}) \]
となることを用いてよい.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。