タグ「座標」の検索結果

34ページ目:全2097問中331問~340問を表示)
佐賀大学 国立 佐賀大学 2015年 第3問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-2ax+2a^2 \]
を考える.ただし,$a>0$とする.以下の問いに答えよ.

(1)放物線$C_2$の頂点の座標を$a$を用いて表せ.
(2)$2$つの放物線$C_1$,$C_2$の共通接線を$\ell$とし,$C_1$と$\ell$との接点の$x$座標を$p$,$C_2$と$\ell$との接点の$x$座標を$q$とする.$p$と$q$の値および$\ell$の方程式を,それぞれ$a$を用いて表せ.
(3)放物線$C_1$,$C_2$および接線$\ell$によって囲まれた図形の面積を$S_1$とする.$S_1$を$a$を用いて表せ.
(4)点$\displaystyle \left( -\frac{a}{2},\ \frac{a^2}{4} \right)$における$C_1$の接線を$m$とする.このとき,$m$の方程式を$a$を用いて表せ.また,$m$と接線$\ell$との交点の$x$座標を求めよ.
(5)放物線$C_1$および接線$\ell$,$m$によって囲まれた図形の面積を$S_2$とする.$S_2$を$a$を用いて表せ.さらに,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
徳島大学 国立 徳島大学 2015年 第1問
直交座標の原点$\mathrm{O}$を極とし,$x$軸の正の部分を始線とする極座標$(r,\ \theta)$を考える.この極座標で表された$3$点を$\displaystyle \mathrm{A} \left( 1,\ \frac{\pi}{3} \right)$,$\displaystyle \mathrm{B} \left( 2,\ \frac{2 \pi}{3} \right)$,$\displaystyle \mathrm{C} \left( 3,\ \frac{4 \pi}{3} \right)$とする.

(1)点$\mathrm{A}$の直交座標を求めよ.
(2)$\angle \mathrm{OAB}$を求めよ.
(3)$\triangle \mathrm{OBC}$の面積を求めよ.
(4)$\triangle \mathrm{ABC}$の外接円の中心と半径を求めよ.ただし,中心は直交座標で表せ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第3問
座標平面上の$3$点$\mathrm{A}(0,\ \sqrt{2})$,$\mathrm{B}(2 \sqrt{6},\ \sqrt{2})$,$\mathrm{C}(\sqrt{6},\ 3 \sqrt{2})$に対して,点$\mathrm{P}(p,\ q)$は線分$\mathrm{AP}$,$\mathrm{BP}$の垂直二等分線が点$\mathrm{C}$で交わるという条件を満たす点とする.ただし,$q>\sqrt{2}$である.また,点$\mathrm{A}$から直線$\mathrm{BP}$へ下ろした垂線と点$\mathrm{B}$から直線$\mathrm{AP}$へ下ろした垂線が点$\mathrm{T}(s,\ t)$で交わっているとする.このとき,以下の問に答えよ.

(1)点$\mathrm{P}$の軌跡を求め,図示せよ.
(2)点$\mathrm{T}$の軌跡を求め,図示せよ.
小樽商科大学 国立 小樽商科大学 2015年 第2問
曲線$T:y=x^3+6x^2$について,次の問いに答えよ.

(1)点$(2,\ a)$を通る曲線$T$への接線の本数$L$を求めよ.ただし$a>0$とする.
(2)この$L$が$2$本のとき,接点の$x$座標が小さい方の接線と,曲線$T$で囲まれる部分の面積を求めよ.
愛媛大学 国立 愛媛大学 2015年 第3問
$a$を自然数とし,関数$f(x)=x^3+2x^2+ax+4$は$x=x_1$で極大,$x=x_2$で極小になるものとする.また,曲線$y=f(x)$上の$2$点$\mathrm{P}(x_1,\ f(x_1))$,$\mathrm{Q}(x_2,\ f(x_2))$の中点を$\mathrm{R}$とする.

(1)$a=1$であることを示せ.
(2)点$\mathrm{P}$および点$\mathrm{Q}$の座標を求めよ.
(3)点$\mathrm{R}$は曲線$y=f(x)$上にあることを示せ.
(4)点$\mathrm{R}$における曲線$y=f(x)$の接線は,点$\mathrm{R}$以外に$y=f(x)$との共有点をもたないことを示せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。