タグ「座標」の検索結果

33ページ目:全2097問中321問~330問を表示)
東京工業大学 国立 東京工業大学 2015年 第4問
$xy$平面上を運動する点$\mathrm{P}$の時刻$t (t>0)$における座標$(x,\ y)$が
\[ x=t^2 \cos t,\quad y=t^2 \sin t \]
で表されている.原点を$\mathrm{O}$とし,時刻$t$における$\mathrm{P}$の速度ベクトルを$\overrightarrow{v}$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\theta (t)$とするとき,極限値$\displaystyle \lim_{t \to \infty} \theta (t)$を求めよ.
(2)$\overrightarrow{v}$が$y$軸に平行になるような$t (t>0)$のうち,最も小さいものを$t_1$,次に小さいものを$t_2$とする.このとき,不等式$t_2-t_1<\pi$を示せ.
埼玉大学 国立 埼玉大学 2015年 第2問
$xy$平面上の点$\mathrm{P}$の$x$座標および$y$座標がともに整数であるとき,$\mathrm{P}$を格子点とよぶ.また,自然数$n$に対して,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq n \\
0 \leqq y \leqq n
\end{array} \right. \]
の表す領域を$R$とする.$R$内の$4$つの格子点を頂点とする正方形の個数を$q_n$とする.次の問いに答えよ.

(1)$xy$平面上の$2$点$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b) (a>0,\ b>0)$を結ぶ線分を$1$辺とする正方形$\mathrm{ABCD}$を考える.点$\mathrm{C}$,$\mathrm{D}$が第$1$象限に含まれるとき,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
(2)$k$は自然数とする.$4$点$(0,\ 0)$,$(k,\ 0)$,$(k,\ k)$,$(0,\ k)$を頂点とする正方形を$E$とする.$E$の辺上の格子点($E$の頂点を含む)を$4$つの頂点とする正方形の個数を求めよ.
(3)$q_1,\ q_2,\ q_3$を求めよ.
(4)$q_n$を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
$xy$平面上の点$\mathrm{P}$の$x$座標および$y$座標がともに整数であるとき,$\mathrm{P}$を格子点とよぶ.また,自然数$n$に対して,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq n \\
0 \leqq y \leqq n
\end{array} \right. \]
の表す領域を$R$とする.$R$内の$4$つの格子点を頂点とする正方形の個数を$q_n$とする.次の問いに答えよ.

(1)$xy$平面上の$2$点$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b) (a>0,\ b>0)$を結ぶ線分を$1$辺とする正方形$\mathrm{ABCD}$を考える.点$\mathrm{C}$,$\mathrm{D}$が第$1$象限に含まれるとき,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
(2)$k$は自然数とする.$4$点$(0,\ 0)$,$(k,\ 0)$,$(k,\ k)$,$(0,\ k)$を頂点とする正方形を$E$とする.$E$の辺上の格子点($E$の頂点を含む)を$4$つの頂点とする正方形の個数を求めよ.
(3)$q_1,\ q_2,\ q_3$を求めよ.
(4)$q_n$を求めよ.
熊本大学 国立 熊本大学 2015年 第2問
座標空間内の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(3,\ 0,\ 1)$,$\mathrm{C}(1,\ 2,\ 0)$を含む平面を$H$とする.以下の問いに答えよ.

(1)点$\mathrm{P}(-3,\ 2,\ 2)$は$H$上の点であることを示せ.
(2)点$\mathrm{Q}(1,\ -3,\ -4)$を通る直線が$H$と直交するとき,その交点の座標を求めよ.
琉球大学 国立 琉球大学 2015年 第2問
頂点が点$\mathrm{A}(0,\ 4)$で,点$\mathrm{B}(2,\ 0)$を通る放物線を考える.次の問いに答えよ.

(1)この放物線をグラフとする$2$次関数を求めよ.
(2)この放物線上にあり,$x$座標が$2a (a>0)$である点を$\mathrm{C}$とする.この放物線と$x$軸との交点で,点$\mathrm{B}$と異なる点を$\mathrm{D}$とする.点$\mathrm{C}$における放物線の接線$\ell_1$と点$\mathrm{D}$における放物線の接線$\ell_2$との交点$\mathrm{E}$の座標を,$a$を使って表せ.
(3)この放物線と直線$\ell_2$,および点$\mathrm{E}$を通り$y$軸に平行な直線で囲まれた部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2015年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において,$2$曲線$y=\cos x$,$y=\sin 2x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めたい.次の問いに答えよ.

(1)$2$曲線$y=\cos x$,$y=\sin 2x$の交点の$x$座標をすべて求めよ.ただし,$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$とする.
(2)体積$V$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第2問
座標平面上に原点を中心とする半径$1$の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ -1)$,$\mathrm{B}(0,\ -1)$があり,点$\mathrm{A}$を通る傾き$k$の直線$\ell$を考える.直線$\ell$は円$C$と異なる$2$点で交わるものとし,点 $\mathrm{A}$から遠い方の交点を$\mathrm{P}$,近い方の交点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{Q}$の座標をそれぞれ$k$を用いて表せ.
(3)三角形$\mathrm{BPQ}$の面積を$k$を用いて表せ.
(4)三角形$\mathrm{BPQ}$の面積を最大にする$k$を求めよ.
大分大学 国立 大分大学 2015年 第4問
曲線$C:4x^2+9y^2=36 (x>0)$上の点$\displaystyle \mathrm{P} \left( \frac{3 \sqrt{3}}{2},\ y_1 \right)$が第$1$象限にある.点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.

(1)$y_1$の値を求めなさい.
(2)接線$\ell$の方程式を求めなさい.
(3)接線$\ell$と$x$軸との交点の$x$座標を求めなさい.
(4)曲線$C$,接線$\ell$,$x$軸で囲まれた部分の面積$S$を求めなさい.
佐賀大学 国立 佐賀大学 2015年 第2問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
佐賀大学 国立 佐賀大学 2015年 第1問
$\phantom{A}$
\[ f(x)=\left\{ \begin{array}{ll}
x(5-x) & (x \geqq 0) \\
x(x^2-1) & (x<0)
\end{array} \right. \]
とおき,関数$y=f(x)$のグラフを$C$とおく.直線$y=ax$と$C$は,原点$\mathrm{O}$およびそれ以外の$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているものとする.ただし,点$\mathrm{P}$の$x$座標は正,点$\mathrm{Q}$の$x$座標は負であるとする.線分$\mathrm{OP}$と$C$によって囲まれる図形の面積を$S_1(a)$,線分$\mathrm{OQ}$と$C$によって囲まれる図形の面積を$S_2(a)$とし,$S(a)=S_1(a)+S_2(a)$とおく.このとき,次の問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$S_1(a)$を$a$を用いて表せ.
(3)$S_2(a)$を$a$を用いて表せ.
(4)$(1)$で求めた範囲を$a$が変化するとき,$S(a)$の最小値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。