タグ「座標」の検索結果

21ページ目:全2097問中201問~210問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
座標平面上に$2$点$\mathrm{A}(-2,\ 4)$,$\mathrm{B}(4,\ 2)$および$2$つの直線$\ell:x+y=1$,$m:x-y=3$が与えられている.

(1)点$\mathrm{P}$が直線$\ell$上を動くとき,$\mathrm{AP}+\mathrm{PB}$が最小となる$\mathrm{P}$の座標は
\[ \left( \frac{[$50$][$51$][$52$]}{[$53$]},\ \frac{[$54$][$55$][$56$]}{[$57$]} \right) \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$がそれぞれ直線$\ell,\ m$上を動くとき,$\mathrm{AP}+\mathrm{PQ}+\mathrm{QB}$が最小となる$\mathrm{P}$,$\mathrm{Q}$の座標はそれぞれ
\[ \left( \frac{[$58$][$59$]}{[$60$]},\ \frac{[$61$][$62$]}{[$63$]} \right),\quad \left( \frac{[$64$][$65$]}{[$66$]},\ \frac{[$67$][$68$]}{[$69$]} \right) \]
である.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}$を全体集合とする.$A$を$6$の正の約数がつくる部分集合とし,$A$の補集合を$\overline{A}$とする.$B$を$9$の正の約数がつくる部分集合とし,$B$の補集合を$\overline{B}$とする.$\overline{A} \cup B$の要素を書き並べて表すと$[ア]$であり,$A \cap \overline{B}$の要素を書き並べて表すと$[イ]$である.
(2)等式$\displaystyle f(x)=-6x+2 \int_{-1}^2 f(t) \, dt$を満たす関数$f(x)$は,$f(x)=[ウ]$である.
(3)$2$次方程式$x^2+2ax+a=0$が$x=-a$を解として持つときの$a$の値をすべて求めると,$a=[エ]$である.
(4)$2$進法で表された数$1101011_{(2)}$を$10$進法で表すと$[オ]$である.
(5)複素数$x=a+bi (a>0,\ b>0)$が$x^4=-9$を満たすとき,定数$a=[カ]$,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$0 \leqq \theta \leqq \pi$の範囲で$\cos 2\theta-\cos \theta=0$を満たす$\theta$をすべて求めると,$\theta=[ク]$である.
(7)不等式$\displaystyle -2<\log_{8}x<\frac{5}{3}$を解くと,$\displaystyle \frac{1}{[ケ]}<x<[コ]$である.ただし,空欄に入る数は整数である.
(8)$p,\ q$を実数とし,$q>4$とする.座標平面上の$4$点$\mathrm{A}(p,\ q)$,$\mathrm{B}(0,\ 4)$,$\mathrm{C}(1,\ -1)$,$\mathrm{D}(5,\ 3)$を頂点とする平行四辺形$\mathrm{ABCD}$において$\overrightarrow{\mathrm{DC}}$と$\overrightarrow{\mathrm{DA}}$のなす角を$\theta$とするとき,$\cos \theta=[サ]$である.
立教大学 私立 立教大学 2016年 第2問
座標平面上における放物線$C:y=x^2-2x+1$と直線$\ell:y=x$の$2$つの交点のうち,$x$座標の値が小さい方の点を$\mathrm{A}(p,\ p)$とする.直線$\ell$上の点$\mathrm{B}(1,\ 1)$と点$\mathrm{A}$の間にある点$\mathrm{D}(q,\ q)$を通り$y$軸と平行な直線と放物線$C$との交点を$\mathrm{E}$とし,点$\mathrm{E}$を通り$x$軸と平行な直線と放物線$C$とのもう$1$つの交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$p$の値を求めよ.
(2)$\mathrm{EF}$の長さを$q$を用いて表せ.
(3)三角形$\mathrm{DEF}$の面積を$q$を用いて表せ.
(4)点$\mathrm{D}$が線分$\mathrm{AB}$上を動くとき,三角形$\mathrm{DEF}$の面積が最大となる$q$の値を求めよ.
(5)$q$が$(4)$で求めた値であるときの三角形$\mathrm{DEF}$の面積を求めよ.
立教大学 私立 立教大学 2016年 第2問
$a,\ b$を実数,$t$を正の実数とする.$\mathrm{O}$を原点とする座標平面上の$2$つの放物線
\[ C_1:y=-x^2,\quad C_2:y=x^2+ax+b \]
が,点$\mathrm{P}(t,\ -t^2)$において同じ接線$\ell$を持つとする.また,点$\mathrm{P}$における$C_1$の法線を$m$とする.このとき,次の問いに答えよ.

(1)$\ell$と$m$の方程式をそれぞれ$t$を用いて表せ.
(2)$a,\ b$をそれぞれ$t$を用いて表せ.
(3)$m$と$C_2$の軸および$C_2$で囲まれる図形の面積$S_1$を$t$を用いて表せ.
(4)$\ell$と$y$軸の交点を$\mathrm{Q}$とし,三角形$\mathrm{OPQ}$の面積を$S_2$とするとき,極限$\displaystyle \lim_{t \to \infty} \frac{S_1}{S_2}$の値を求めよ.
自治医科大学 私立 自治医科大学 2016年 第7問
不等式$2 |x|+3 |y| \leqq 30$の表す領域における点の座標を$(a,\ b)$とする.$a,\ b$ともに整数となる点の個数を$p$としたとき,$\displaystyle n<\frac{p}{100}<n+1$となる自然数$n$の値を求めよ.
自治医科大学 私立 自治医科大学 2016年 第13問
原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(6,\ 8)$,点$\mathrm{B}(21,\ 0)$を頂点とする$\triangle \mathrm{OAB}$について考える.$\triangle \mathrm{OAB}$の内接円の中心の座標を$(p,\ q)$とする.$|\displaystyle\frac{2p|{q}}$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
\begin{mawarikomi}{36mm}{
\begin{zahyou*}[ul=1mm](-5,30)(0,35)
\def\C{(0,0)}%
\Drawline{(0,0)(30,0)}%
\Drawline{(0,10)(30,10)}%
\Drawline{(0,20)(30,20)}%
\Drawline{(0,30)(30,30)}%
\Drawline{(0,0)(0,30)}%
\Drawline{(10,0)(10,30)}%
\Drawline{(20,0)(20,30)}%
\Drawline{(30,0)(30,30)}%
\tenretu*{A(10,-13.75);B(10,13.75);C(-17,0)}%
\tenretu*{A(10,13.75);B(17,0);C(-17,0)}%
\emathPut{(0,35)}{例:$4 \times 4$の場合}
\Kuromaru[8pt]{(10,0)}
\Kuromaru[8pt]{(0,20)}
\Kuromaru[8pt]{(20,20)}
\Kuromaru[8pt]{(20,30)}
\tenretu*{A(-17,0);B(17,0)}%
\end{zahyou*}
}
座標平面の格子点$\{(i,\ j) \;|\; 1 \leqq i \leqq n,\ 1 \leqq j \leqq n \}$に$n$個の碁石を置く.ここで,$n$は正の整数とする.ただし,これらの碁石は同じ種類であり,互いに区別できない.また,格子点には高々$1$つの碁石しか置けないものとする.各$i$に対して,$\{(i,\ j) \;|\; 1 \leqq j \leqq n \}$を第$i$列,各$j$に対して$\{(i,\ j) \;|\; 1 \leqq i \leqq n \}$を第$j$行と呼ぶ.
\end{mawarikomi}

(1)$n$個の碁石を置くすべての場合の配置の総数を$A_n$とすると
\[ A_1=1, A_2=6, A_3=[$1$][$2$], A_4=\kakkofour{$3$}{$4$}{$5$}{$6$}, \cdots \]
である.
(2)$n$個の碁石を置くとき,どの行およびどの列にも$1$個の碁石を置く場合の配置の総数を$B_n$とすると
\[ B_1=1, B_2=2, B_3=[$7$][$8$], B_4=\kakkofour{$9$}{$10$}{$11$}{$12$}, \cdots \]
である.
(3)$n$個の碁石を置くとき,どの行およびどの列にも高々$2$個の碁石を置く場合の配置の総数を$C_n$とすると
\[ C_1=1, C_2=6, C_3=[$13$][$14$], C_4=\kakkofour{$15$}{$16$}{$17$}{$18$}, \cdots \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のように放物線
\[ C:y=\frac{1}{2}x^2+ax+b \]
($a,\ b$は定数)が$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-4x+5 \]
に接している.

ここで,$2$つの曲線が交点$\mathrm{P}$で接するとは,$\mathrm{P}$における接線が一致することを意味し,このとき,$\mathrm{P}$を接点という.
このとき,$C$と$C_1$の接点の$x$座標は$\displaystyle \frac{[$43$][$44$]}{[$45$][$46$]}$,$C$と$C_2$の接点の$x$座標は$\displaystyle \frac{[$47$][$48$]}{[$49$][$50$]}$である.また,$3$つの放物線に囲まれた部分の面積は$\displaystyle \frac{[$51$][$52$]}{[$53$][$54$]}$である.

\end{mawarikomi}
京都産業大学 私立 京都産業大学 2016年 第3問
$xy$平面上の$2$つの曲線

$C_1:y=e^x-2$
$C_2:y=\log x$

について以下の問いに答えよ.ただし,$\log$は自然対数であり,$e$は自然対数の底とする.

(1)$s$を実数,$t$を正の数とする.$C_1$上の点$(s,\ e^s-2)$における$C_1$の接線の方程式,および$C_2$上の点$(t,\ \log t)$における$C_2$の接線の方程式を求めよ.
(2)$C_1$と$C_2$の両方に接する直線は$2$本存在する.それぞれの直線の方程式を求めよ.
(3)$(2)$の$2$直線それぞれの$C_2$との接点の座標を求めよ.
(4)$(2)$の$2$直線の交点の$x$座標を求めよ.
(5)$C_2$と$(2)$の$2$直線で囲まれた部分の面積を求めよ.
同志社大学 私立 同志社大学 2016年 第3問
座標空間内の$4$点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ 1,\ 5)$,$\mathrm{C}(2,\ 3,\ -1)$,$\mathrm{P}(2 \cos \theta,\ \sin \theta,\ 0)$を考える.ただし,$0 \leqq \theta<2\pi$とする.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直で,大きさが$1$のベクトルをすべて求めよ.
(3)点$\mathrm{P}$から,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$に,下ろした垂線の足$\mathrm{H}$の座標を$\theta$を用いて表せ.
(4)四面体$\mathrm{PABC}$の体積$V$を$\theta$を用いて表せ.
(5)四面体$\mathrm{PABC}$の体積$V$の最大値と最小値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。