タグ「座標」の検索結果

202ページ目:全2097問中2011問~2020問を表示)
龍谷大学 私立 龍谷大学 2010年 第3問
関数$f(x)$を
\[ f(x)=3x^2-2ax+b \]
とする.ただし,$a,\ b$は実数である.また,関数$F(x)$を
\[ F(x)=\int_0^x f(t) \, dt \]
と定義する.以下の問いに答えなさい.

(1)$F(x)$を求めなさい.
(2)放物線$y=f(x)$の頂点の$y$座標は$-3$であり,$y=f(x)$のグラフと$y=F(x)$のグラフとは$x$軸上で原点以外の共有点をもつ.このとき,$a,\ b$を求めなさい.
(3)(2)で求めた$a,\ b$に対し,$y=F(x)$の極大値と極小値を求め,$y=F(x)$のグラフを描きなさい.
南山大学 私立 南山大学 2010年 第2問
$a>0$のとき,座標平面上に曲線$C:y=x^2-x$と点$\mathrm{A}(a,\ -3a^2-a)$を考える.$\mathrm{A}$を通る$2$つの$C$の接線を$\ell_1$,$\ell_2$とする.ただし,接点の$x$座標が小さい方を$\ell_1$とする.

(1)座標平面上に$C$のグラフをかき,$C$と$x$軸で囲まれた部分の面積$S_1$を求めよ.
(2)$\ell_1,\ \ell_2$の方程式を求めよ.
(3)$C$と$\ell_1$および直線$x=a$で囲まれた部分の面積$S_2$を求めよ.
(4)$(1)$の$S_1$と$(3)$の$S_2$が等しくなるような$a$の値を求めよ.
南山大学 私立 南山大学 2010年 第2問
$t$を任意の実数として,放物線$C_1:y=x^2-2(3t+2)x+4(3t+5)$を考える.

(1)$C_1$の頂点の座標を$t$で表せ.
(2)$t$の値が変化するとき,$C_1$の頂点が描く曲線$C_2$の方程式を求めよ.また,$C_2$の$y$座標が最大となるときの$t$の値を求めよ.
(3)$(2)$で求めた$C_2$と$x$軸との交点を,$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とする.また,$\mathrm{PQ}$と平行な線分$\mathrm{RS}$の長さが$\mathrm{PQ}$より小さくなるように,$C_2$上に$2$点$\mathrm{R}$,$\mathrm{S}$を,$x$座標の小さい順にとる.このとき,四角形$\mathrm{PQSR}$の面積の最大値とそのときの$\mathrm{RS}$の長さを求めよ.
南山大学 私立 南山大学 2010年 第2問
放物線$C:y=x^2$と直線$\ell$があり,これらは$2$点$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$で交わっている.ただし,$\alpha<\beta$である.

(1)$\ell$の方程式を$\alpha,\ \beta$で表せ.
(2)$\mathrm{A}$と$\mathrm{B}$それぞれで$C$に接する$2$本の直線が交わる点を$\mathrm{T}$とする.$\mathrm{T}$の座標を$\alpha,\ \beta$で表せ.
(3)$\ell$が定点$(-1,\ 0)$を通るとき,$(2)$の$\mathrm{T}$の軌跡を求めよ.
南山大学 私立 南山大学 2010年 第2問
座標平面上に直線$\ell:y=mx-4m$と放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.$m$は,$\ell$と$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるような値をとるとする.また,線分$\mathrm{PQ}$の中点を$\mathrm{M}$とする.

(1)$\ell$は$m$の値にかかわりなく,ある定点を通る.この点の座標を求めよ.
(2)$m$のとりうる値の範囲を求めよ.
(3)$\mathrm{M}$の軌跡を求め,座標平面上にそれを図示せよ.
南山大学 私立 南山大学 2010年 第2問
座標平面上に曲線$C:y=e^{-x}$があり,$C$上に点$\mathrm{P}(a,\ e^{-a})$がある.ただし$a \geqq 0$とする.

(1)$\mathrm{P}$における$C$の接線の方程式を求めよ.
(2)$(1)$の接線と$x$軸,$y$軸で囲まれた図形の面積$S$を$a$を用いて表せ.
(3)$a \geqq 0$における$(2)$の$S$の最大値と,そのときの$a$の値を求めよ.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
南山大学 私立 南山大学 2010年 第3問
$\mathrm{O}$を原点とする座標空間に四面体$\mathrm{OABC}$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標は,$\mathrm{A}(\sqrt{2},\ 0,\ 0)$,$\mathrm{B}(0,\ \sqrt{3},\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$である.また,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上に点$\mathrm{P}$があり,実数$s,\ t$に対して,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$を満たす.

(1)$\mathrm{P}$の座標を$s,\ t$で表せ.
(2)$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AC}}$のとき,$s,\ t$を求めよ.
(3)$\triangle \mathrm{ABC}$の面積を求めよ.
(4)$(2)$のとき,直線$\mathrm{AP}$と直線$\mathrm{BC}$の交点を$\mathrm{H}$とする.$|\overrightarrow{\mathrm{AH}}|$を求めよ.
西南学院大学 私立 西南学院大学 2010年 第5問
$xy$平面上の$3$点$(0,\ -13)$,$(1,\ -6)$,$(3,\ 2)$を通る$2$次関数のグラフ$y=f(x)$があり,これと$x$軸で囲まれた部分の中に存在する平行四辺形$\mathrm{ABCD}$を考える.ここで,平行四辺形の辺$\mathrm{AB}$は$x$軸上にあり,点$\mathrm{C}$と点$\mathrm{D}$は$2$次関数のグラフ上にある.ただし,点$\mathrm{A}$の$x$座標は点$\mathrm{B}$の$x$座標より小さく,点$\mathrm{C}$の$x$座標は$4$より大きいものとする.このとき,次の問に答えよ.

(1)上の条件を満たす$f(x)$を求めよ.
(2)点$\mathrm{C}$の$x$座標を$t$とするとき,平行四辺形$\mathrm{ABCD}$の面積$S$を$t$を用いて表せ.
(3)平行四辺形$\mathrm{ABCD}$の面積$S$の最大値を求めよ.
学習院大学 私立 学習院大学 2010年 第4問
$a$を正の実数とし,関数$y=x^2+a$のグラフを$C$とする.$C$上の点$\mathrm{P}$において$C$に接線$\ell$をひき,$\ell$と$y=x^2$のグラフの交点を$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{Q}$の$x$座標を$\alpha$,$\mathrm{R}$の$x$座標を$\beta$とするとき,$|\alpha-\beta|$は$\mathrm{P}$の取り方によらないことを証明せよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。