タグ「座標」の検索結果

193ページ目:全2097問中1921問~1930問を表示)
大分大学 国立 大分大学 2010年 第3問
曲線$y=x^2$を$C$とする.$k>0$について,直線$y=kx$を$\ell_1$とし,原点を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)曲線$C$と直線$\ell_2$の交点の座標を求めなさい.
(2)曲線$C$と直線$\ell_1$とで囲まれる部分の面積を$S_1$,曲線$C$と直線$\ell_2$とで囲まれる部分の面積を$S_2$とする.$S_1,\ S_2$をそれぞれ$k$の式で表しなさい.
(3)$S_1+S_2$の最小値を求めなさい.
大分大学 国立 大分大学 2010年 第2問
曲線$y=x^2$を$C$とする.$k>0$について,直線$y=kx$を$\ell_1$とし,原点を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)曲線$C$と直線$\ell_2$の交点の座標を求めなさい.
(2)曲線$C$と直線$\ell_1$とで囲まれる部分の面積を$S_1$,曲線$C$と直線$\ell_2$とで囲まれる部分の面積を$S_2$とする.$S_1,\ S_2$をそれぞれ$k$の式で表しなさい.
(3)$S_1+S_2$の最小値を求めなさい.
福井大学 国立 福井大学 2010年 第3問
$k$は実数で,$k>1$とする.このとき,Oを原点とする座標平面上の2つの曲線
\[ C_1:x^2+y^2=1,\quad C_2:y=kx^2-\frac{5}{4} \]
は,$x$座標が正となる2つの交点A,Bを持つ.以下の問いに答えよ.

(1)A,Bの$x$座標をそれぞれ$\alpha,\ \beta$とおく.$\alpha^2+\beta^2$および$\alpha^2 \beta^2$を$k$を用いて表せ.
(2)線分ABの長さを求めよ.
(3)$\angle \text{AOB}=150^\circ$のとき,$k$の値を求めよ.
福井大学 国立 福井大学 2010年 第4問
$k$を実数とする.Oを原点とする座標平面上の曲線$C:y=\log x -k$について,$C$の接線のうちOを通るものを$\ell_1$とし,その接点をPとする.以下の問いに答えよ.

(1)$\ell_1$の方程式を,$k$を用いて表せ.
(2)点Pにおける$C$の法線を$\ell_2$とし,$\ell_2$と$x$軸との交点の$x$座標を$\alpha$とおく.$\alpha$を$k$を用いて表せ.さらに,$\alpha$が最小となる$k$の値および$\alpha$の最小値を求めよ.
(3)$k$を(2)で求めた値とするとき,$C$と$\ell_1$および$x$軸で囲まれた図形の面積を求めよ.
高知大学 国立 高知大学 2010年 第4問
$k$と$l$を実数の定数とし,$x$に関する方程式
\[ x^4-2(k-l)x^2+(k^2+l^2-6k-8l)=0 \quad \cdots\cdots ① \]
を考える.このとき,次の問いに答えよ.

(1)方程式$①$で$k=2,\ l=1$としたときの解を求めよ.
(2)方程式$①$が実数解を持たないための必要十分条件を$k$と$l$で表せ.
(3)方程式$①$の異なる実数解の個数が$3$つであるような実数の組$(k,\ l)$を座標平面上に図示せよ.
(4)方程式$①$の異なる実数解の個数がただ$1$つであるような整数の組$(k,\ l)$をすべて求めよ.
熊本大学 国立 熊本大学 2010年 第2問
曲線$C_1:y=x^2$上の点A$(a,\ a^2)$における接線が曲線$C_2:y=x^2-4$と交わる点をB,Cとする.ただし,Bの$x$座標はCの$x$座標より小さいとする.以下の問いに答えよ.

(1)線分BCの中点MおよびCの座標を$a$を用いて表せ.
(2)Mを通り$y$軸に平行な直線,線分MCおよび曲線$C_2$で囲まれた部分の面積を求めよ.
福井大学 国立 福井大学 2010年 第4問
曲線$C:y=e^x$上の点P$(t,\ e^t)$における接線を$\ell$とし,$\ell$と$x$軸との交点をQとする.さらに,Qを通り$\ell$に直交する直線と$C$との交点をRとする.以下の問いに答えよ.

(1)点Qの$x$座標を$t$を用いて表せ.
(2)$\triangle$PQRの外心が$y$軸上にあるときの$t$の値を求めよ.
(3)$t$を(2)で求めた値とするとき,直線PQ,QRと$C$とで囲まれる部分を$x$軸の周りに1回転して得られる回転体の体積を求めよ.
佐賀大学 国立 佐賀大学 2010年 第3問
放物線$y=-x^2+6x-7$を$C_1$とし,$C_1$の頂点をA,$C_1$上の点$(1,\ -2)$をBとする.点A,Bを通る直線を$\ell$とし,点A,Bを通る放物線$y=ax^2+bx+c$を$C_2$とする.ただし,$a,\ b,\ c$は実数,$a>0$である.このとき,次の問いに答えよ.

(1)点Aの座標を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)$b$と$c$を$a$を用いて表せ.
(4)$C_2$と$\ell$で囲まれた図形の面積を$a$を用いて表せ.
佐賀大学 国立 佐賀大学 2010年 第2問
座標平面上で,直線$\ell:y=mx$に関する対称移動によって,点P$(x,\ y)$が点Q$(x^\prime,\ y^\prime)$に移ったとする.ただし,$m$は0でない定数とし,点Pは$\ell$上にないとする.このとき,次の問いに答えよ.

(1)線分PQの中点が$\ell$上にあることと,線分PQが$\ell$と垂直に交わっていることを利用して
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=\frac{1}{1+m^2} \left( \begin{array}{cc}
1-m^2 & 2m \\
2m & m^2-1
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
が成り立つことを示せ.
(2)直線$\displaystyle y=\frac{1}{\sqrt{3}}x,\ y=-\frac{1}{\sqrt{3}}x$に関する対称移動を表す1次変換をそれぞれ$f,\ g$とする.このとき,合成変換$g \circ f$および$f \circ g$を表す行列を求めよ.
(3)(2)で求めた2つの行列は,原点Oを中心とし,角$\theta$だけ回転する1次変換を表す行列である.それぞれの$\theta$を求めよ.
鳥取大学 国立 鳥取大学 2010年 第1問
次の問いに答えよ.

(1)直線$2x+y=16 \cdots \maru{1},\ 2x+3y=24 \cdots \maru{2}$の$x$切片と$y$切片の座標をそれぞれ求めよ.
(2)(1)で定めた直線\maru{1}と\maru{2}との交点の座標を求めよ.
(3)4つの不等式$2x+y \leqq 16,\ 2x+3y \leqq 24,\ x \geqq 0,\ y \geqq 0$の表す領域を$F$とする.$F$の面積を求めよ.
(4)点$(x,\ y)$が(3)で定めた領域$F$を動くとき,$x+y$の最大値と最小値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。