タグ「座標」の検索結果

192ページ目:全2097問中1911問~1920問を表示)
宮崎大学 国立 宮崎大学 2010年 第2問
座標平面に原点O$(0,\ 0)$,点A$(-1,\ 3)$,点B$(4,\ 8)$がある.さらに,2次関数$y=f(x)$のグラフ$G$と円$C$はそれぞれ3点O,A,Bを通るものとする.このとき,次の各問に答えよ.

(1)$f(x)$を求めよ.
(2)円$C$の中心の座標および半径を求めよ.
(3)グラフ$G$と円$C$との交点のうち,3点O,A,B以外の点の座標を求めよ.
宮崎大学 国立 宮崎大学 2010年 第3問
座標平面上に原点O$(0,\ 0)$と点A$(3,\ 0)$がある.自然数$n$に対して,点B$_n(0,\ n)$をとり,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点の個数を$a_n$とする.ただし,$x$座標と$y$座標がともに整数の点を格子点という.このとき,次の各問に答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)自然数$k$に対して,$n=3k$とする.このとき,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点のうち,$x$座標が1であるものの個数を,$k$を用いて表せ.
(3)自然数$k$に対して,$a_{3k}$を,$k$を用いて表せ.
(4)$S_n=a_1+a_2+\cdots +a_n$とする.自然数$m$に対して,$S_{3m}$を,$m$を用いて表せ.
岡山大学 国立 岡山大学 2010年 第3問
原点を中心とする半径1の円を$C_1$とし,原点を中心とする半径$\displaystyle \frac{1}{2}$の円を$C_2$とする.$C_1$上に点P$_1(\cos \theta,\ \sin \theta)$があり,また,$C_2$上に点P$_2 \displaystyle (\frac{1}{2} \cos 3\theta,\ \frac{1}{2} \sin 3\theta)$がある.ただし,$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$であるとする.線分P$_1$P$_2$の中点をQとし,点Qの原点からの距離を$r(\theta)$とする.このとき,次の問いに答えよ.

(1)点Qの$x$座標の取りうる範囲を求めよ.
(2)点Qが$y$軸上にあるときの$\theta$の値を$\alpha$とする.このとき,$\alpha$および定積分
\[ \int_0^\alpha \{r(\theta)\}^2 \, d\theta \]
を求めよ.
千葉大学 国立 千葉大学 2010年 第6問
数直線の原点上にある点が,以下の規則で移動する試行を考える. \\
\quad (規則) サイコロを振って出た目が奇数の場合は,正の方向に1移動し,出た目が偶数の場合は,負の方向に1移動する. \\
$k$回の試行の後の,点の座標を$X(k)$とする.

(1)$X(10)=0$である確率を求めよ.
(2)$X(1) \neq 0,\ X(2) \neq 0,\ \cdots,\ X(5) \neq 0$であって,かつ,$X(6)=0$となる確率を求めよ.
(3)$X(1) \neq 0,\ X(2) \neq 0,\ \cdots,\ X(9) \neq 0$であって,かつ,$X(10)=0$となる確率を求めよ.
宮崎大学 国立 宮崎大学 2010年 第1問
座標平面上に原点O$(0,\ 0)$と点A$(3,\ 0)$がある.自然数$n$に対して,点B$_n(0,\ n)$をとり,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点の個数を$a_n$とする.ただし,$x$座標と$y$座標がともに整数の点を格子点という.このとき,次の各問に答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)自然数$k$に対して,$n=3k$とする.このとき,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点のうち,$x$座標が1であるものの個数を,$k$を用いて表せ.
(3)自然数$k$に対して,$a_{3k}$を,$k$を用いて表せ.
(4)$S_n=a_1+a_2+\cdots +a_n$とする.自然数$m$に対して,$S_{3m}$を,$m$を用いて表せ.
宮崎大学 国立 宮崎大学 2010年 第5問
座標平面上に2つの円
\begin{eqnarray}
& & C_1:(x+1)^2+(y-1)^2=1 \nonumber \\
& & C_2:(x-1)^2+(y-1)^2=1 \nonumber
\end{eqnarray}
がある.不等式$y>2$が表す領域$D$内に点P$(a,\ b)$をとる.点Pから円$C_1,\ C_2$にひいた接線と$x$軸との交点をそれぞれA,Bとする.ただし,下図のように$\triangle$PABは円$C_1,\ C_2$をともに含むものとする.このとき,次の各問に答えよ.

(1)$b$を定数とするとき,辺ABの長さが最小となるのは$a=0$のときであることを示せ.
(2)点Pが領域$D$内を動くとき,$\triangle$PABの面積の最小値を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
鳥取大学 国立 鳥取大学 2010年 第1問
次の問いに答えよ.

(1)直線$2x+y=16 \cdots\cdots ①,\ 2x+3y=24 \cdots\cdots ②$の$x$切片と$y$切片の座標をそれぞれ求めよ.
(2)(1)で定めた直線$①$と$②$との交点の座標を求めよ.
(3)$4$つの不等式$2x+y \leqq 16,\ 2x+3y \leqq 24,\ x \geqq 0,\ y \geqq 0$の表す領域を$F$とする.$F$の面積を求めよ.
(4)点$(x,\ y)$が(3)で定めた領域$F$を動くとき,$x+y$の最大値と最小値を求めよ.
福井大学 国立 福井大学 2010年 第1問
座標平面上に4点O$(0,\ 0)$,A$(4,\ 0)$,B$(4,\ 4)$,C$(0,\ 4)$をとり,正方形OABCを考える.点Bを出発点とする2つの動点P,Qが,次の規則に従って動くものとする.

1枚のコインを投げ,
表が出たときには,点Pは辺AB上を点Aの方向に1進み,点Qは動かない.
裏が出たときには,点Qは辺BC上を点Cの方向に1進み,点Pは動かない.

この試行を4回繰り返し,その結果できる三角形OPQの面積を得点とするゲームを行う.以下の問いに答えよ.

(1)ゲームの終了時に,点Pの座標が$(4,\ 1)$である確率を求めよ.
(2)このゲームの得点が8となる確率を求めよ.
(3)このゲームの得点の期待値を求めよ.
徳島大学 国立 徳島大学 2010年 第1問
放物線$\displaystyle y=\frac{2}{3}x^2$を$C_1$とし,円$x^2+y^2=1$の$y \geqq 0$を満たす部分を$C_2$とする.$C_1$と$C_2$の交点をP,Qとし,原点をOとする.

(1)P,Qの座標を求めよ.
(2)扇形OPQの面積を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
大分大学 国立 大分大学 2010年 第2問
中心の$xyz$座標が$(0,\ 0,\ 1)$で半径が1の球$G$と点P$(0,\ -2,\ a)$に関して,点Pを通る直線が球$G$と共有点をもつとき,この直線と$xy$平面の交点全体が作る図形の外形を表す方程式を求めよ.また,その方程式が表す図形を実数$a$に関して分類せよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。