タグ「座標」の検索結果

190ページ目:全2097問中1891問~1900問を表示)
奈良女子大学 国立 奈良女子大学 2010年 第1問
2次関数$y=x^2$のグラフを$C$とし,2次関数$y=-x^2$のグラフを$D$とする.以下の問いに答えよ.

(1)$D$を$x$軸方向に3,$y$軸方向に5だけ平行移動したグラフを$E$とする.$C$と$E$の交点を求めよ.
(2)$D$を$x$軸方向に$p$,$y$軸方向に$q$だけ平行移動したグラフを$F$とする.$C$と$F$がただ一つの共有点をもつとき,共有点の座標を$p$を用いて表せ.
琉球大学 国立 琉球大学 2010年 第2問
3点O$(0,\ 0,\ 0)$,A$(3,\ 0,\ 0)$,B$(1,\ 2,\ 1)$がある.

(1)$z$軸上の点C$(0,\ 0,\ m)$から直線AB上の点Hにおろした垂線をCHとする.このとき,点Hが線分AB上にあるような$m$の値の範囲を求めよ.
(2)点Hが線分AB上にあるとき,垂線CHの長さの最大値,最小値とそのときのHの座標を求めよ.
(3)三角形OABに外接する円の中心Pの座標とその半径$r$を求めよ.
奈良女子大学 国立 奈良女子大学 2010年 第3問
曲線$y=2x \sin x \cos x$を$C_1$とし,曲線$y=x \cos x$を$C_2$とする.以下の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$において,$C_1$と$C_2$の交点の$x$座標をすべて求めよ.
(2)(1)で求めた$x$座標の中で最大の値を$a$とする.区間$[\,0,\ a \,]$において,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
高知大学 国立 高知大学 2010年 第3問
関数$f(x)$の導関数$f^{\, \prime}(x)$は$f^{\, \prime}(x)=x^2-1$を満たし,さらに$f(3)=6$であるとする.このとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$の極大値と極小値を求めよ.
(3)曲線$y=f(x)$と直線$y=kx$が接するときの$k$の値を求めよ.
(4)$\displaystyle g(x)=\frac{2}{9}x^3+\frac{2}{3}x^2-2x$とする.このとき,$y=f(x)$と$y=g(x)$のグラフを同一座標平面上に図示せよ.また,それらの共有点の座標を求めよ.
富山大学 国立 富山大学 2010年 第2問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
富山大学 国立 富山大学 2010年 第1問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
香川大学 国立 香川大学 2010年 第2問
$a$を正の実数とし,$f(x)=x^3-3a^2x$とおく.曲線$C:y=f(x)$の原点Oにおける接線を$\ell_1$,原点以外の任意の点P$(p,\ f(p))$における接線を$\ell_2$とし,2つの直線$\ell_1,\ \ell_2$の交点をQとする.このとき,次の問に答えよ.

(1)2直線$\ell_1,\ \ell_2$の方程式を求めよ.
(2)点Qの座標を求めよ.
(3)$\triangle$OPQは曲線$C$によって2つの部分に分けられる.このうち,曲線$C$と線分OPで囲まれた図形の面積を$S$,曲線$C$と2直線$\ell_1,\ \ell_2$で囲まれた図形の面積を$T$とするとき,比$S:T$は一定であることを示せ.
香川大学 国立 香川大学 2010年 第3問
座標平面上を運動する点Pの時刻$t$における座標を
\[ x=e^t \cos t, y=e^t \sin t \]
とするとき,次の問に答えよ.

(1)時刻$t$における点Pの速度$\overrightarrow{v}$およびその大きさ$|\overrightarrow{v}|$を求めよ.
(2)$\displaystyle t=\frac{\pi}{2}$のとき,ベクトル$\overrightarrow{v}$が$x$軸の正の向きとのなす角$\alpha$を求めよ.
(3)原点をOとするとき,ベクトル$\overrightarrow{v}$とベクトル$\overrightarrow{\mathrm{OP}}$のなす角$\theta$は一定であることを示し,$\theta$を求めよ.
山口大学 国立 山口大学 2010年 第3問
$A,\ A^\prime$をそれぞれ座標平面上の点$(\alpha \cos \theta,\ \alpha \sin \theta)$,$(-\alpha \cos \theta,\ -\alpha \sin \theta)$とし,$f$を行列
\[ \biggl( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \biggr) \]
の表す1次変換とする.$\displaystyle \alpha= \left( \frac{45}{4} \right)^{\frac{1}{6}},\ r=\left( \frac{10}{3} \right)^{\frac{1}{6}},\ \theta=\frac{\pi}{6}$とするとき,次の問いに答えなさい.

(1)2点A,A$^{\prime}$の逆変換$f^{-1}$による像を焦点とし,焦点からの距離の差が2に等しい双曲線$C_1$の方程式を求めなさい.
(2)2点A,A$^\prime$の合成関数$f \circ f$による像を焦点とし,直線$x+2y=0$を漸近線にもつ双曲線$C_2$の方程式を求めなさい.
(3)双曲線$C_1$と$C_2$により囲まれた部分を$x$軸の周りに1回転させてできる立体の体積を求めなさい.
岐阜大学 国立 岐阜大学 2010年 第5問
$a$を正の実数とし,$b$を負の実数とする.$xy$平面上の直線$C_1:y=x$と放物線$C_2:y=ax^2+bx$を考える.$C_1$と$C_2$は2点で交わっており,$C_1$と$C_2$の囲む図形の面積を$S$とする.以下の問に答えよ.

(1)$a$を$S$と$b$を用いて表せ.
(2)$C_1$と$C_2$の交点の座標を$(p_1,\ q_1) ,\ (p_2,\ q_2) \ (\text{ここで}p_1<p_2)$とし,$L=p_2-p_1$とおく.$p_1 \leqq x \leqq p_2$における$ax^2+bx$の最小値の絶対値を$T$とする.$S$の値が一定になるように$a$と$b$を変化させたとき,$\displaystyle \frac{T-L}{L^3}$の最小値を$S$を用いて表せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。