タグ「座標」の検索結果

172ページ目:全2097問中1711問~1720問を表示)
早稲田大学 私立 早稲田大学 2011年 第7問
座標平面上の点$(x,y)$の両座標とも整数のとき,その点を格子点という.本問では,「領域内」とはその領域の内部および境界線を含むものとする.

(1)不等式$|x|+2 |y| \leqq 4$の表す領域を$D$とする.領域$D$内に格子点は$[ノ]$個ある.
(2)$n$を自然数として,不等式$|x|+2 |y| \leqq 2n$の表す領域を$F$とする.領域$F$内の格子点の総数は
$\left( [ハ]n^2+[ヒ]n+[フ] \right)$個である.
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$-平面上の円$C: x^2+y^2=1$の内側を半径$\displaystyle\frac{1}{2}$の円$D$が$C$に接しながらすべらずに転がる.時刻$t$において$D$は点$(\cos\, t,\ \sin\, t)$で$C$に接しているとする.$D$の周上の点$\mathrm{P}$の軌跡について考える.ある時刻$t_0$において点$\mathrm{P}$が$\displaystyle(\frac{1}{4},\ \frac{\sqrt{3}}{4})$にあり,$D$の中心が第$2$象限にあるとする.以下の問に答えよ.

(1)時刻$t_0$における$D$の中心の座標を求めよ.
(2)第$1$象限において,点$\mathrm{P}$が$C$上にあるときの$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$の軌跡を$xy$-平面上に図示せよ.
早稲田大学 私立 早稲田大学 2011年 第1問
曲線$y=\log_4x$上に,その$x$座標を,それぞれ,$\displaystyle\frac{1}{2}t,\ t,\ 2t (t>0)$とする$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をとる.このとき,$\mathrm{P}$と$\mathrm{R}$の距離は$[ア]$であり,$\triangle \mathrm{PQR}$の面積は$[イ]$である.空欄にあてはまる$t$の式を解答欄に記入せよ.
早稲田大学 私立 早稲田大学 2011年 第4問
$a>0$とし,$x$-$y$平面上に3点O$(0,\ 0)$,A$(a,\ 0)$,P$(x,\ y)$をとる.$l$を与えられた正定数として,Pが
\[ 2\text{PO}^2 + \text{PA}^2 = 3l^2 \dotnum{*} \]
をみたすとする.このとき,次の各問に答えよ.

(1)\maru{*}をみたすPの集合が空集合とならないための$a$の条件を求め,そのときのP$(x,\ y)$の軌跡を表す方程式を求めよ.
(2)3点O,\ A,\ Pが一直線上にないようなPが存在するとき,OAを軸として,$\triangle$POAを回転して立体をつくる.この立体の体積が最大になるときのPの$x$座標と最大の体積$V$を,$a$を用いて表せ.
(3)(2)で求めた体積$V$を最大とする$a$の値とそのときの最大の体積を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の各設問の$[13]$から$[16]$までの空欄を埋めよ.

$2$つの放物線$C_1: y=x^2+3x+2$,$C_2:y=-x^2+4x+2$と直線$\ell:y=ax+2$($a$は定数)を考える.直線$\ell$は,放物線$C_1,\ C_2$とそれぞれ異なる$2$点で交わるとする.ここで,$C_1$と$\ell$で囲まれた部分の面積と$C_2$と$\ell$で囲まれた部分の面積の和を$S$とする.

(1)放物線$C_1$と直線$\ell$の交点の$x$座標は$[13]$である.
(2)$a=5$のとき,$S=[14]$である.
(3)$a=[15]$のとき$S$は最小となり,そのときの$S$は$[16]$である.
金沢工業大学 私立 金沢工業大学 2011年 第2問
放物線$y=x^2-4x-6$を$C_1$とし,$C_1$を$x,\ y$軸方向にそれぞれ$3,\ -9$だけ平行移動して得られる放物線を$C_2$とする.

(1)放物線$C_2$の方程式は$y=x^2-[サシ]x+[ス]$である.
(2)放物線$C_2$の頂点の座標は$([セ],\ [ソタチ])$である.
(3)放物線$C_1$と$C_2$の両方の頂点を通る直線の方程式は
\[ y=[ツテ]x-[ト] \]
である.
金沢工業大学 私立 金沢工業大学 2011年 第4問
円$x^2+y^2+4x-2y-4=0$を$C$とし,直線$y=-x+2$を$\ell$とする.

(1)円$C$の中心$\mathrm{P}$の座標は$([クケ],\ [コ])$であり,半径は$[サ]$である.
(2)直線$\ell$に関して点$\mathrm{P}$と対称な点$\mathrm{Q}$の座標は$([シ],\ [ス])$である.
(3)点$\mathrm{P}$と直線$\ell$の間の距離は$\displaystyle \frac{[セ]}{[ソ]} \sqrt{[タ]}$である.
(4)円$C$と直線$\ell$の$2$つの共有点の間の距離は$[チ] \sqrt{[ツ]}$である.
(5)点$\mathrm{Q}$を中心とし,円$C$と同じ半径をもつ円を$C^\prime$とすると,$2$つの円$C$と$C^\prime$の共通部分の面積は$\displaystyle \frac{[テ]}{[ト]} \pi-[ナ]$である.
上智大学 私立 上智大学 2011年 第3問
$xyz$空間内の正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$はすべて原点$\mathrm{O}$を中心とする半径$1$の球面$S$上にある.$\mathrm{A}$の座標は$(0,\ 0,\ 1)$であり,$\mathrm{B}$の$x$座標は正,$y$座標は$0$である.また,$\mathrm{C}$の$y$座標は$\mathrm{D}$の$y$座標より大きい.

(1)$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$z$座標は$\displaystyle \frac{[ニ]}{[ヌ]}$である.

(2)$\mathrm{C}$の$x$座標は$\displaystyle \frac{[ネ]}{[ノ]} \sqrt{[ハ]}$である.

(3)$\mathrm{O}$を端点とし$\triangle \mathrm{ABC}$の重心を通る半直線が$S$と交わる点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さは$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$,ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は$[ホ]$である.

以後,四面体$\mathrm{PABC}$を$V_\mathrm{p}$で表す.

(4)$\triangle \mathrm{APB}$の面積は$\displaystyle \frac{[マ]}{[ミ]}$である.

(5)$(3)$で$\triangle \mathrm{ABC}$に対して点$\mathrm{P}$および四面体$V_\mathrm{p}$を定めたときと同様に,$\triangle \mathrm{ACD}$,$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCD}$に対してそれぞれ点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{T}$および四面体$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$を定める.四面体$\mathrm{ABCD}$と$V_\mathrm{P}$,$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$をあわせた立体を$V$とすると,$V$の表面積は$[ム]$であり,$V$の体積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第3問
放物線$\displaystyle y=\frac{1}{2}x^2$を平行移動すると,$2$点$(0,\ 6),\ (2,\ 0)$を通るようになった.平行移動後の放物線の頂点の座標を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第3問
放物線$\displaystyle y=\frac{1}{2}x^2$を平行移動すると,$2$点$(0,\ 6),\ (2,\ 0)$を通るようになった.平行移動後の放物線の頂点の座標を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。