タグ「座標」の検索結果

158ページ目:全2097問中1571問~1580問を表示)
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
釧路公立大学 公立 釧路公立大学 2012年 第3問
以下の各問に答えよ.

(1)次の不等式を解け.$2 \log_{\frac{1}{4}} (4x+1) \geqq 1+\log_{\frac{1}{2}} (11-x)$
(2)以下の問に答えよ.

(i) 次の等式を満たす関数$f(x)$を求めよ.$\displaystyle f(x)=x^2-2x+3 \int_0^1 f(t) \, dt$
(ii) $(ⅰ)$で求めた$f(x)$に点$\displaystyle \left( \frac{3}{2},\ -2 \right)$から引いた接線の方程式と,接点の座標を求めよ.
(iii) $(ⅰ)$,$(ⅱ)$で求めた関数$f(x)$と$2$つの接線で囲まれた図形の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
2 & 1 \\
3 & -2
\end{array} \right)$が表す$1$次変換を$f$とする.以下の問いに答えよ.

(1)行列$A$の逆行列$A^{-1}$を求めよ.
(2)点$\mathrm{P}(a,\ b)$が$1$次変換$f$によって移される点$\mathrm{P}^\prime$の座標を求めよ.
(3)直線$3x-y=2$が$1$次変換$f$によって移される直線を求めよ.
(4)$y=3x$に関する対称移動$g$は$1$次変換であることを示し,$g$を表す行列を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
福岡女子大学 公立 福岡女子大学 2012年 第2問
放物線$y=x^2$の$2$つの接線が直交しており,接点を$\mathrm{P}$,$\mathrm{Q}$としその$x$座標をそれぞれ$s,\ t$とする.次の問に答えなさい.

(1)$s$と$t$の関係式を求めなさい.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分は,接線のとり方に関係なく常に$y$軸上のある定点を通ることを示しなさい.
北九州市立大学 公立 北九州市立大学 2012年 第4問
赤球$2$個,青球$3$個,緑球$1$個が入った白い箱がある.この白い箱から無作為に$1$個の球を取り出し,球の色を確認後,球を白い箱に戻す作業を試行$\mathrm{A}$とする.以下の問いに答えよ.

(1)試行$\mathrm{A}$を$5$回繰り返すときに,取り出される$5$個の球のうち,$3$個が青球である確率を求めよ.
(2)試行$\mathrm{A}$を$4$回繰り返すときに,少なくとも赤球が$2$個出る確率を求めよ.
次に,赤い箱,青い箱,緑の箱に数字の書かれたカードが$4$枚ずつ入っていて,それぞれの箱のカードに書かれた数字と枚数は次の通りとする.
\begin{itemize}
赤い箱:$1$が$2$枚,$2$が$1$枚,$3$が$1$枚
青い箱:$1$が$1$枚,$2$が$2$枚,$3$が$1$枚
緑の箱:$1$が$2$枚,$2$が$2$枚
\end{itemize}
試行$\mathrm{A}$を$1$回実施し,取り出した球と同じ色の箱から無作為に$1$枚のカードを取り出し,カードに書かれた数字を確認後,カードを元の箱に戻す作業を試行$\mathrm{B}$とする.
(3)試行$\mathrm{B}$を$1$回実施するときに,出る数字の期待値を求めよ.
(4)試行$\mathrm{B}$を$2$回繰り返すときに,出る$2$個の数字の合計が偶数である確率を求めよ.
(5)動点$\mathrm{P}$は数直線上の原点から出発し,奇数回目の試行$\mathrm{B}$で出た数字の分だけ正の方向に動き,偶数回目の試行$\mathrm{B}$で出た数字の分だけ負の方向に動くこととする.試行$\mathrm{B}$を$4$回繰り返したとき,動点$\mathrm{P}$の座標が$3$である確率を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第2問
空間に$2$点$\displaystyle \mathrm{A} \left( 0,\ 0,\ \frac{3}{2} \right)$,$\mathrm{B}(0,\ 0,\ 2)$と,$xy$平面上を動く点$\mathrm{P}(s,\ t,\ 0)$がある.また,線分$\mathrm{BP}$を$u:(1-u)$に内分する点を$\mathrm{Q}$とする.ただし,$s$と$t$は実数であり,$0<u<1$である.

(1)点$\mathrm{Q}$の座標を$u,\ s,\ t$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AQ}}|=|\overrightarrow{\mathrm{AB}}|$を満たす$u$を$s$と$t$を用いて表せ.
(3)点$\mathrm{Q}$が$yz$平面に平行な平面$\displaystyle x=\frac{\sqrt{3}}{4}$上にあり,かつ$|\overrightarrow{\mathrm{AQ}}|=|\overrightarrow{\mathrm{AB}}|$が成り立つとき,点$\mathrm{P}$は必ずある円$C$の上にある.円$C$の中心の座標と半径を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第3問
関数$f(x)=mx \cos (mx)-\sin (mx)$について,以下の問いに答えよ.ただし,$m$は正の整数とする.

(1)$f(x)$が極値をとる最も小さい正の実数$x$を,$m$を用いて表せ.
(2)$m=2$のとき,区間$0 \leqq x \leqq 2\pi$における$f(x)$の最大値を求めよ.
(3)$m=3$のとき,曲線$y=f(x)$上の点$\displaystyle \left( \frac{\pi}{2},\ f \left( \frac{\pi}{2} \right) \right)$における曲線の接線が$y$軸と交わる点の座標$(x_0,\ y_0)$を求めよ.
(4)$\displaystyle \int_0^\pi f(x) \, dx=0$が成り立つために$m$が満たすべき条件を求めよ.
京都大学 国立 京都大学 2011年 第2問
$a,\ b,\ c$を実数とし,$\mathrm{O}$を原点とする座標平面上において,行列$\left(
\begin{array}{ccc}
a & 1 \\
b & c
\end{array}
\right)$に
よって表される$1$次変換を$T$とする.この$1$次変換$T$が$2$つの条件

(1)点$(1,\ 2)$を点$(1,\ 2)$に移す
(2)点$(1,\ 0)$と点$(0,\ 1)$が$T$によって点$\mathrm{A}$,$\mathrm{B}$にそれぞれ移るとき,$\triangle \mathrm{OAB}$の面積が$\displaystyle\frac{1}{2}$である

を満たすとき,$a,\ b,\ c$を求めよ.
東京大学 国立 東京大学 2011年 第1問
座標平面において,点P$(0,\ 1)$を中心とする半径1の円を$C$とする.$a$を$0<a<1$を満たす実数とし,直線$y=a(x+1)$と$C$との交点をQ,Rとする.

(1)$\triangle$PQRの面積$S(a)$を求めよ.
(2)$a$が$0<a<1$の範囲を動くとき,$S(a)$が最大となる$a$を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。