タグ「座標」の検索結果

153ページ目:全2097問中1521問~1530問を表示)
久留米大学 私立 久留米大学 2012年 第3問
$a$は正の実数で,点$\mathrm{A}(0,\ a)$,点$\mathrm{P}(-2,\ 0)$,点$\mathrm{Q}(2,\ 0)$を頂点とする三角形を考える.この三角形の外接円の中心座標は$[$5$]$,半径は$[$6$]$であり,$a=[$7$]$のとき,外接円の半径は最小値$[$8$]$をとる.
久留米大学 私立 久留米大学 2012年 第4問
$y=x^4+2x^3-3x^2-2x+1$のグラフと$2$点で接する直線の方程式は$y=[$9$]$であり,接点の座標は$[$10$]$と$[$11$]$となる.
久留米大学 私立 久留米大学 2012年 第5問
点$\mathrm{A}(2,\ 2,\ 3)$と点$\mathrm{B}(2,\ 4,\ 1)$の中点を$\mathrm{M}$,原点を$\mathrm{O}$とする.ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{OM}}$ともに直交する単位ベクトル$\overrightarrow{t}$を成分表示で表すと$[$12$]$となる.また,$\mathrm{AB}$を底辺とする正三角形$\mathrm{ABC}$が$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{MC}}$の条件を満たすとき,頂点$\mathrm{C}$の座標は$[$13$]$となる.
愛知工業大学 私立 愛知工業大学 2012年 第3問
$xy$平面において,点$(0,\ 2)$を中心とする半径$1$の円に外接し,さらに$x$軸に接する円の中心を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の$y$座標が$2$のとき,$\mathrm{P}$の$x$座標を求めよ.
(2)点$\mathrm{P}$の軌跡$C$の方程式を求めよ.
(3)軌跡$C$,$x$軸,$y$軸および直線$x=2$で囲まれた部分の面積を求めよ.
北海道科学大学 私立 北海道科学大学 2012年 第11問
$x$の$2$次関数$y=ax^2+4ax+b (a>0)$について次の各問に答えよ.

(1)この関数のグラフの頂点の座標を$a,\ b$を用いて表せ.
(2)この関数の値が$-3 \leqq x \leqq 2$において,最大になるときと最小になるときの$x$の値をそれぞれ求めよ.
(3)$-3 \leqq x \leqq 2$におけるこの関数の最大値が$3$,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.
(4)$(3)$のとき,この$2$次関数のグラフの$x$軸および$y$軸との共有点を求めて,グラフを描け.
大同大学 私立 大同大学 2012年 第4問
$0<a<2$,$f(x)=x^2(x-2)$,$g(x)=a^2(x-2)$とする.

(1)曲線$y=f(x)$と直線$y=g(x)$の交点の$x$座標を求めよ.
(2)曲線$y=f(x)$と直線$y=g(x)$で囲まれる$2$つの部分の面積の和$S(a)$を求めよ.
(3)$S(a)$を最小にする$a$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$の外部の点$\mathrm{A}$からこの円に$2$本の接線を引き,その接点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,$\mathrm{M}$の座標を$(s,\ t)$とする.

(1)点$\mathrm{A}$の座標が$(a,\ b)$であるとき,$a,\ b$を用いて,点$\mathrm{M}$の座標$(s,\ t)$を表しなさい.
(2)点$\mathrm{A}$が直線$2x+3y=12$上を動くとき,点$\mathrm{M}$の軌跡を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
杏林大学 私立 杏林大学 2012年 第4問
座標平面上の点$\mathrm{P}(x,\ y)$が$t \geqq 0$に対して
\[ x=1-e^{-3t},\quad y=8-3t-8e^{-3t} \]
で表されるとき,以下の問いに答えよ.

(1)$t \to \infty$のとき$x$の極限値は
\[ \lim_{t \to \infty} x=[ア] \]
であり,$t=0$のとき
\[ \frac{dy}{dt}=[イウ] \]
となる.また,任意の$t$に対して

$\displaystyle \frac{d^2 x}{dt^2}+[エ] \frac{dx}{dt}=[オ]$,

$\displaystyle \frac{d^2 y}{dt^2}+[カ] \frac{dy}{dt}=[キク]$

が成り立つ.
(2)$\displaystyle \frac{dy}{dx}=0$となる$t$の値を$\alpha$とすると,$e^\alpha=[ケ]$となる.このときの$x$の値を$\beta$とすると,$\displaystyle \beta=\frac{[コ]}{[サ]}$であり,$y$の値は$[シ]-[ス] \alpha$である.
(3)$0 \leqq t \leqq \alpha$に対して点$\mathrm{P}$の描く曲線と,直線$x=\beta$および$x$軸で囲まれた部分の面積は$\displaystyle \frac{[セソ]}{[タチ]}+\frac{[ツ]}{[テ]} \alpha$となる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2012年 第3問
関数$f(x)$は,

$\displaystyle (ⅰ) f \left( \frac{\sqrt{3}}{3} \right)=2$
$\displaystyle (ⅱ) \int_0^t \sqrt{1+\{f^\prime(x)\}^2} \, dx=t^3+t (t>0)$

を満たすものとする.このとき,以下の設問に答えなさい.

(1)この条件を満たす関数$f(x)$は
\[ f(x)=[$1$] \]
または
\[ f(x)=[$2$] \]
である.
(2)曲線$y=[$1$]$および曲線$y=[$2$]$の交点の座標をすべて求めなさい.ただし,$[$1$]$,$[$2$]$は$(1)$で求めた関数とする.
(3)点$(x,\ y)$が$(2)$の$2$曲線$y=[$1$]$および$y=[$2$]$で囲まれた範囲(境界を含む)を動くとき,$\sqrt{7}x+3y$の最小値を求めなさい.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。