タグ「座標」の検索結果

151ページ目:全2097問中1501問~1510問を表示)
北海学園大学 私立 北海学園大学 2012年 第4問
放物線$C:y=-x^2+ax$上の点$\mathrm{A}(a,\ 0)$を通り,傾きが$-1$の直線を$\ell$とする.ただし,$a$は定数で,$a>1$とする.

(1)$C$と$\ell$の共有点のうち,点$\mathrm{A}$とは異なる点の座標を$a$を用いて表せ.
(2)$C$と$\ell$で囲まれた図形の面積$S_1$を$a$を用いて表せ.また,曲線$C_1:y=-x^2+ax (0 \leqq x \leqq 1)$について,$C_1$,$\ell$および$y$軸によって囲まれた図形の面積$S_2$を$a$を用いて表せ.
(3)$S=S_1-S_2$とする.$S$の最小値とそのときの$a$の値を求めよ.
昭和大学 私立 昭和大学 2012年 第3問
$2$次関数$y=-2x^2+4kx-k^2+k-2$のグラフが次のようになるとき,実数$k$の値または値の範囲を求めよ.

(1)頂点の$x$座標が$4$である.
(2)$x$軸と接する.
(3)頂点の$y$座標が$10$より小さい.
昭和大学 私立 昭和大学 2012年 第5問
硬貨を投げて座標平面上の点を移動させるゲームをする.ゲームの規則は,硬貨を投げて表が出たら$x$軸の正の方向に$1$だけ進み,裏が出たら$y$軸の正の方向に$1$だけ進むものとする.点は原点から出発する.以下の各問に答えよ.

(1)点$(3,\ 3)$に到着する確率を求めよ.
(2)点$(1,\ 1)$を通って点$(3,\ 3)$に到着する確率を求めよ.
(3)点$(1,\ 1)$を通るが,点$(2,\ 2)$を通らずに点$(3,\ 3)$に到着する確率を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第1問
座標平面上の点$\mathrm{A}$を通る$2$つの曲線$C_1,\ C_2$の点$\mathrm{A}$における接線に対して,これらの接線のなす角$\displaystyle \theta \left( \text{ただし} 0 \leqq \theta \leqq \frac{\pi}{2} \right)$を点$\mathrm{A}$における$2$曲線$C_1$と$C_2$のなす角と呼ぶことにする.

(1)$2$次方程式$x^2-1=ax+b$が重解をもつとき,$a$と$b$の間に$b=[$1$]$の関係式が成り立つ.
(2)放物線$y=x^2-1$の点$(1,\ 0)$における接線の方程式は$y=[$2$]$である.
(3)点$(1,\ 0)$における$2$曲線$y=x^2-1$と$y=x^3+3x^2-3x-1$のなす角$\theta$に対して,$\tan \theta$の値は$[$3$]$である.
法政大学 私立 法政大学 2012年 第4問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.
$t$を正の定数とする.曲線$y=x^3-x$を$C$,$C$上の点$\mathrm{P}(t,\ t^3-t)$における接線を$\ell$とする.$\ell$の方程式は
\[ y=\left( [ア] t^2-[イ] \right) x-[ウ] t^3 \]
である.
$C$と$\ell$の,$\mathrm{P}$以外の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エオ] t$である.
$\mathrm{Q}$における$C$の接線を$m$とすると,$m$の方程式は
\[ y=\left( [カキ] t^2-[イ] \right)x+[クケ] t^3 \]
である.
$C$と$m$の,$\mathrm{Q}$以外の共有点を$\mathrm{R}$とすると,$\mathrm{R}$の$x$座標は$[コ] t$であり,
\[ \overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=18 \left( [サシ] t^6-[スセ] t^4+[ソ] t^2 \right) \]
となる.ここで,
\[ f(t)=\frac{\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}}{18t^6} \]
とおくと,$\displaystyle t=\frac{[タ] \sqrt{[チツ]}}{[チツ]}$のとき,$f(t)$は最小値$\displaystyle \frac{[テト]}{[ナ]}$をとる.
法政大学 私立 法政大学 2012年 第5問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.

$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}(x,\ y)$がある.

(1)$\theta$は$0<\theta<2\pi$を満たし,行列$A$を
\[ A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
とする.行列$A$が表す移動により,$\mathrm{P}$が点$\mathrm{Q}_1$に移るとするとき,$\mathrm{Q}_1$は$\mathrm{O}$を中心に$\mathrm{P}$を角$[ア]$だけ回転した点である.
ただし,$[ア]$については,以下の$\nagamaruichi$~$\nagamaruroku$から$1$つを選べ.
\[ \nagamaruichi -\theta \qquad \nagamaruni 0 \qquad \nagamarusan \theta \qquad \nagamarushi 2\theta \qquad \nagamarugo 3\theta \qquad \nagamaruroku \theta^2 \]
行列$B$を$\displaystyle B=\frac{1}{3}A$で定める.行列$B$が表す移動により$\mathrm{P}$が点$\mathrm{Q}_2$に移るとするとき,$\displaystyle \mathrm{OQ}_2=\frac{[イ]}{[ウ]} \mathrm{OP}$である.
$\mathrm{P}$が$x$軸方向に$-2$だけ平行移動し,$y$軸方向に$4$だけ平行移動した点を$\mathrm{Q}_3(X,\ Y)$とするとき,
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
[エオ] \\
[カ]
\end{array} \right) \]
が成り立つ.
(2)$\mathrm{P}(x,\ y)$を点$\mathrm{R}(X,\ Y)$に移す移動$T$が
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{lr}
3 & -\sqrt{3} \\
\sqrt{3} & 3
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
14 \\
7
\end{array} \right) \]
で表されている.
移動$T$により,点$\mathrm{B}(p,\ q)$が点$\mathrm{B}(p,\ q)$に移るとするとき,
\[ \left( \begin{array}{c}
p \\
q
\end{array} \right)=\left( \begin{array}{c}
[キク]-\sqrt{[ケ]} \\
[コ] \sqrt{[サ]}-[シ]
\end{array} \right) \]
である.
また,この移動$T$により$\mathrm{P}$が移る点$\mathrm{R}$は,$\theta,\ k$を実数として,点$\mathrm{B}$を中心に$\mathrm{P}$を角$\theta$だけ回転した点を$\mathrm{P}^\prime (x^\prime,\ y^\prime)$とおくと,$\overrightarrow{\mathrm{BR}}=k \overrightarrow{\mathrm{BP}^\prime}$を満たす.つまり,$(1)$の行列$A$を用いると,
\[ \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right)=A \left( \begin{array}{c}
x-p \\
y-q
\end{array} \right),\quad \left( \begin{array}{c}
X-p \\
Y-q
\end{array} \right)=k \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right) \]
が成り立つから,$\displaystyle \theta=\frac{\pi}{[ス]}$,$k=[セ]$である.
ただし,$[セ]$については,以下の$\nagamaruichi$~$\nagamarukyu$から$1$つを選べ.
$\nagamaruichi$ $1$ \qquad $\nagamaruni$ $\sqrt{2}$ \qquad $\nagamarusan$ $\sqrt{3}$ \qquad $\nagamarushi$ $2 \sqrt{2}$ \qquad $\nagamarugo$ $3$
$\nagamaruroku$ $2 \sqrt{3}$ \qquad $\nagamarushichi$ $3 \sqrt{2}$ \qquad $\nagamaruhachi$ $3 \sqrt{3}$ \qquad $\nagamarukyu$ $6$
関西学院大学 私立 関西学院大学 2012年 第3問
座標空間の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(2,\ -1,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$yz$平面上の点$\mathrm{P}(0,\ a,\ b)$が$\overrightarrow{\mathrm{AP}}=t \overrightarrow{\mathrm{AB}}$を満たすとき,$t$の値および$a,\ b$の値を求めよ.
(2)平面$\alpha$上に点$\mathrm{Q}(2,\ 0,\ c)$がある.$\overrightarrow{\mathrm{AQ}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$を満たす$s,\ t$の値および$c$の値を求めよ.
(3)原点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろすとき,点$\mathrm{H}$の座標を求めよ.また,線分$\mathrm{OH}$の長さを求めよ.
関西学院大学 私立 関西学院大学 2012年 第3問
$a$は$a>2$を満たす実数とする.$f(x)=x^3-a^2x$,$g(x)=-x^2+a^2$とおく.次の問いに答えよ.

(1)$xy$平面において,$y=f(x)$のグラフと$y=g(x)$のグラフは$3$つの共有点をもつことを示し,$3$つの共有点の座標をすべて求めよ.
(2)$y=f(x)$のグラフと$y=g(x)$のグラフの$3$つの共有点を,$x$座標の小さいほうから順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.点$\mathrm{B}$における$y=f(x)$の接線を$\ell$とし,$\ell$と$y=g(x)$のグラフとの共有点のうち点$\mathrm{B}$以外の点を$\mathrm{D}$とする.直線$\ell$の方程式と点$\mathrm{D}$の座標を求めよ.
(3)$y=g(x)$のグラフと直線$\ell$で囲まれ,$x \geqq 0$の範囲にある部分の面積を求めよ.
産業医科大学 私立 産業医科大学 2012年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$に対して,$x$以下の最大の整数を$[x]$で表す.例えば$[3]=3$,$[3.14]=3$,$[-3.14]=-4$である.実数$x$について,方程式$4x-3[x]=0$の解の個数は$[ ]$であり,方程式$x^2-3x+[3x]=0$の解の個数は$[ ]$である.
(2)$a,\ b,\ c$を$a+b+c=\pi$を満たす正の実数とするとき,$\sin (a) \sin (b) \sin (c)$の最大値は$[ ]$である.
(3)原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$について$\triangle \mathrm{ABC}$は正三角形である.$\triangle \mathrm{ABC}$を$1$つの面にもつ正四面体の他の頂点$\mathrm{D}$の座標は$[ ]$または$[ ]$である.
(4)定積分$\displaystyle \int_3^4 \frac{6x+5}{x^3-3x-2} \, dx$の値は$[ ]$である.
(5)$123$から$789$までの$3$桁の数から,$1$つを無作為に選び出すとき,同じ数字が$2$つ以上含まれている確率は$[ ]$である.
(6)数直線上の点$\mathrm{P}$は,原点$\mathrm{O}$を出発して,次のルールに従って移動するとする.
「$1$つのさいころを振り,$3$以下の目が出たときは右に$1$,$5$以上の目が出たときは左に$1$,それぞれ動く.また,$4$の目が出たときは動かない.点$\mathrm{P}$の座標が$-1$になったら,さいころを振るのを止め点$\mathrm{P}$はそこにとどまる.それ以外のときは,さいころをまた振る.」
さいころを多くとも$3$回振り移動も終えた後の,点$\mathrm{P}$の座標の期待値は$[ ]$である.
産業医科大学 私立 産業医科大学 2012年 第2問
座標平面上の原点を$\mathrm{O}$とする.中心が$\mathrm{O}$,半径が$1$の円を$C$とする.円$C$の外部の点を$\mathrm{P}(x_0,\ y_0)$とする.点$\mathrm{P}$を通り円$C$に接する$2$直線を$\ell_1$,$\ell_2$とする.このとき,次の問いに答えなさい.

(1)直線$\ell_1$,$\ell_2$と円$C$の$2$つの接点を結ぶ線分の中点の座標を,点$\mathrm{P}$の座標$x_0$と$y_0$で表しなさい.
(2)直線$\ell_1$,$\ell_2$は$y$軸に平行でないとする.直線$\ell_1$,$\ell_2$と$y$軸の交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の中点を$\mathrm{M}$とする.ただし,点$\mathrm{Q}$と$\mathrm{R}$が一致するときは,点$\mathrm{M}$は点$\mathrm{Q}$,$\mathrm{R}$と一致する点とする.このとき,点$\mathrm{M}$の$y$座標が$2$となる点$\mathrm{P}$の描く曲線と直線$\displaystyle y=\frac{1}{\sqrt{3}}x+1$で囲まれる図形の面積を求めなさい.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。