タグ「座標」の検索結果

148ページ目:全2097問中1471問~1480問を表示)
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
金沢工業大学 私立 金沢工業大学 2012年 第4問
座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=2t-\sin 2t,\quad y=1-\cos 2t \quad (0 \leqq t \leqq \pi) \]
で表される.

(1)点$\mathrm{P}$の時刻$\displaystyle t=\frac{\pi}{6}$における速度は$([コ],\ \sqrt{[サ]})$である.
(2)点$\mathrm{P}$の速さは$2 \sqrt{[シ]([ス]-\cos [セ]t)}$であり,その速さは$\displaystyle t=\frac{\pi}{[ソ]}$のとき最大値$[タ]$をとる.
(3)点$\mathrm{P}$の加速度は,その大きさが一定の値$[チ]$をとり,$x$軸の正の方向を向くのは$\displaystyle t=\frac{\pi}{[ツ]}$のときであり,$x$軸の負の方向を向くのは$\displaystyle t=\frac{[テ]}{[ト]} \pi$のときである.
金沢工業大学 私立 金沢工業大学 2012年 第5問
座標平面上において直線$y=2x$を$\ell$とし,この直線$\ell$に関して対称な$2$点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(u,\ v)$をとる.

(1)直線$\mathrm{PQ}$は直線$\ell$に垂直であるから
\[ v-y=\frac{[アイ]}{[ウ]} (u-x) \qquad \cdots\cdots① \]
が成り立つ.
(2)点$\mathrm{P}$と点$\mathrm{Q}$の中点は直線$\ell$上にあるから
\[ v+y=[エ](u+x) \qquad \cdots\cdots② \]
が成り立つ.
(3)等式$①$と$②$より,$x,\ y$と$u,\ v$の間に関係
\[ \left( \begin{array}{c}
u \\
v
\end{array} \right)=\frac{1}{[オ]} \left( \begin{array}{cc}
[カキ] & [ク] \\
[ケ] & [コ]
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \qquad \cdots\cdots③ \]
が成り立つ.
(4)$1$次変換$③$を表す行列を$A$とすると,
\[ A^2=\left( \begin{array}{cc}
[サ] & [シ] \\
[ス] & [セ]
\end{array} \right),\quad A^{-1}=\frac{1}{[ソ]} \left( \begin{array}{cc}
[タチ] & [ツ] \\
[テ] & [ト]
\end{array} \right) \]
である.
金沢工業大学 私立 金沢工業大学 2012年 第6問
$a$を正の定数とする.座標平面上において,曲線$\displaystyle y=\frac{2}{\sqrt{x}} \cdots\cdots①$上の点$\displaystyle \mathrm{A}(a,\ \frac{2}{\sqrt{a}})$における接線を$\ell$とする.

(1)接線$\ell$の方程式は$\displaystyle y=-\frac{[ア]}{a \sqrt{a}}x+\frac{[イ]}{\sqrt{a}}$と表される.
(2)接線$\ell$が点$(2,\ 1)$を通るとすると,$a$は条件$a \sqrt{a}=[ウ]a-[エ]$を満たす.これより$a=[オ]$,$[カ]+[キ] \sqrt{[ク]}$である.
(3)$a=[オ]$のとき,接点$\mathrm{A}$の$y$座標は$[ケ]$であり,接線$\ell$の傾きは$[コサ]$である.このとき,曲線$①$と接線$\ell$および直線$x=2$によって囲まれた図形の面積は$\displaystyle \frac{[シ] \sqrt{[ス]}-[セソ]}{[タ]}$である.
東京理科大学 私立 東京理科大学 2012年 第2問
曲線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$から直線$y=x$へ垂線を引き,その交点を$\mathrm{H}$とする.ただし,$t>1$とする.

(1)点$\mathrm{H}$の座標を$t$を用いて表しなさい.
(2)範囲$x \geqq 1$において,曲線$y=x^2$と直線$y=x$および線分$\mathrm{PH}$とで囲まれた図形の面積を$S_1$とする.このとき,$S_1$を$t$を用いて表しなさい.
(3)曲線$y=x^2$と直線$y=x$で囲まれた図形の面積を$S_2$とする.$S_1=S_2$であるとき,$t$の値を求めなさい.ただし,$S_1$は$(2)$と同じとする.
神奈川大学 私立 神奈川大学 2012年 第2問
関数$f(x)=x^3-16x-2$について,以下の問いに答えよ.

(1)曲線$y=f(x)$を$y$軸方向に$6$だけ平行移動すると曲線$y=g(x)$となる.$g(x)$を求めよ.
(2)曲線$y=f(x)$を$x$軸方向に$2$だけ平行移動すると曲線$y=h(x)$となる.$h(x)$を求めよ.
(3)$y=g(x)$のグラフと$y=h(x)$のグラフの交点の座標を求めよ.
(4)$y=g(x)$のグラフと$y=h(x)$のグラフに囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)放物線$\displaystyle y=x^2-x+\frac{7}{4}$の頂点の座標は$[ア]$である.
(2)多項式$P(x)$を$x-2$で割ると余りは$3$であり,$x+3$で割ると余りは$-7$である.また,$P(x)$を$(x-2)(x+3)$で割ると商は$x+1$であるが,割り切れない.この$P(x)$を$x+1$で割ると余りは$[イ]$である.
(3)赤い玉$2$個,黄色い玉$3$個,青い玉$4$個が入っている袋から,よくかき混ぜて玉を同時に$3$個取り出すとき,$3$個の玉の色が$2$種類である確率は$[ウ]$である.
(4)$2$つの曲線$y=a-x^2$,$y=x^2+2ax+b$が$x=3$で共通の接線をもつような$a,\ b$の値は$a=[エ]$,$b=[オ]$である.
神奈川大学 私立 神奈川大学 2012年 第3問
関数$\displaystyle f(x)=\log_2 8x \cdot \log_{\frac{1}{2}} \frac{4}{x}$について,以下の問いに答えよ.

(1)$t=\log_2x$とするとき,$f(x)$を$t$の関数$g(t)$として表せ.
(2)$(1)$で求めた関数を$s=g(t)$とするとき,この関数のグラフを座標平面上にえがけ.
(3)$\displaystyle \frac{1}{4} \leqq x \leqq 16$であるとき,$f(x)$の最大値,最小値とそのときの$x$の値をそれぞれ求めよ.
神奈川大学 私立 神奈川大学 2012年 第3問
定数$a,\ b$は$a>b>0$とし,$0 \leqq x \leqq 2\pi$とする.$2$曲線
\[ C_1:y=a \sin x,\quad C_2:y=b \cos x \]
の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.このとき,次の問いに答えよ.

(1)$\sin \alpha,\ \sin \beta$と$\cos \alpha,\ \cos \beta$を$a,\ b$を用いて表せ.
(2)$C_1$と$C_2$で囲まれた部分の面積$S$を$a,\ b$を用いて表せ.
(3)$S=2 \sqrt{5}$,$a+b=3$であるとき,定数$a,\ b$の値を求めよ.
関西大学 私立 関西大学 2012年 第1問
$a$を正の定数とする.$2$つの放物線

$y=x^2-ax+1$
$y=-x^2+(a+4)x-3a+1$

がある.

(1)$2$つの放物線は異なる$2$点で交わる.その$x$座標を$\alpha,\ \beta$とするとき,$\alpha+\beta$および$\alpha\beta$を$a$を用いて表せ.
(2)$2$つの放物線で囲まれる部分の面積$S(a)$を$a$を用いて表せ.
(3)$S(a)$の最小値とそのときの$a$の値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。