タグ「座標」の検索結果

146ページ目:全2097問中1451問~1460問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
座標空間の原点を$\mathrm{O}$とし,座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 1)$をとる.また$0<s<1$,$0<t<1$とし,線分$\mathrm{AB}$を$s:(1-s)$に内分する点を$\mathrm{P}$,線分$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$の座標を,それぞれ$s,\ t$を用いて表しなさい.
(2)$\displaystyle s=\frac{1}{4}$,$\displaystyle t=\frac{1}{2}$のときの$\angle \mathrm{APQ}$の大きさを$\theta$とする.このとき$\cos \theta$の値を求めなさい.ただし,$0^\circ<\theta<180^\circ$とする.
(3)線分$\mathrm{PQ}$の長さを$l$とする.このとき$s,\ t$が,それぞれ$0<s<1$,$0<t<1$の範囲を動くときの$l$の最小値を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第2問
$\mathrm{O}$を原点とする座標平面において,点$(1,\ 1)$を点$(5,\ 5)$に,点$(1,\ -7)$を点$(-3,\ 21)$に移す$1$次変換を$f$とする.$f$による点$\mathrm{P}$の像を点$\mathrm{Q}$とするとき,$\mathrm{P}$に対して内積の条件
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{PQ}}=0 (*) \]
を考える.

(1)$f$を表す行列を求めよ.
(2)条件$(*)$を満たす点$\mathrm{P}(x,\ y)$の軌跡は$2$直線となる.この$2$直線の方程式を求めよ.
実数$a \geqq 0$に対して,
「点$(a,\ 0)$を中心とする半径$1$の円周上の点$\mathrm{P}$で,条件$(*)$を満たすものがちょうど$2$つある」 $(**)$
とする.この$2$点を$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$とするとき,$i=1,\ 2$に対して,$\mathrm{P}_i$の$f$による像を$\mathrm{Q}_i$とし,$\triangle \mathrm{OP}_i \mathrm{Q}_i$の面積を$S_i$とする.
(3)上の条件$(**)$を満たす$a$の値の範囲を求めよ.
(4)$S_i$を$y_i$を用いて表せ.また,和$S_1+S_2$の値を$a$を用いて表せ.
東京理科大学 私立 東京理科大学 2012年 第3問
$k>0$として,座標平面上の曲線$C:y=e^{kx}$を考える.曲線$C$上の点$\mathrm{P}$を,$\mathrm{P}$における$C$の接線$\ell_1$が原点$\mathrm{O}$を通るようにとる.また,点$\mathrm{P}$を通リ$\ell_1$と直交する直線を$\ell_2$とし,図のように,曲線$C$,直線$\ell_2$,$x$軸,$y$軸の$4$つで囲まれた図形を$A$とする.ただし,$e$は自然対数の底である.
(図は省略)

(1)点$\mathrm{P}$の座標と,直線$\ell_2$と$x$軸との交点の座標を求めよ.
(2)図形$A$を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
(3)$k$が$k>0$を動くとき,$(2)$で求めた$V$の最小値と,それを与える$k$の値を求めよ.
学習院大学 私立 学習院大学 2012年 第1問
平面上の点で,その座標が両方とも整数であるものを格子点と呼ぶ.原点を$\mathrm{O}$とし,$\mathrm{O}$以外の格子点$\mathrm{P}$に対して,線分$\mathrm{OP}$上にある$\mathrm{O}$と$\mathrm{P}$以外の格子点の個数を$n(\mathrm{P})$で表す.たとえば,点$\mathrm{P}(2,\ 3)$については$n(\mathrm{P})=0$である.条件
\[ 1 \leqq a \leqq 30 \quad \text{かつ} \quad 1 \leqq b \leqq 30 \quad \text{かつ} \quad n(\mathrm{P})=4 \]
をみたす格子点$\mathrm{P}(a,\ b)$の個数を求めよ.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
西南学院大学 私立 西南学院大学 2012年 第5問
$a$を実数とするとき,$2$次関数
\[ f(x)=x^2+(3-2a)x+2a \]
について,以下の問に答えよ.

(1)$y=f(x)$のグラフの頂点の座標を求めよ.
(2)$-1 \leqq x \leqq 1$でつねに$f(x) \geqq 0$となるときの$a$の値の範囲を求めよ.
(3)$a$は$(2)$で求めた値の範囲を動くものとする.$-1 \leqq x \leqq 1$における$f(x)$の最小値を$m$とするとき,$m$を$a$で表せ.また,$m$を$a$の関数とみるとき,この関数のグラフを図示せよ.
中央大学 私立 中央大学 2012年 第2問
座標平面上に円$(x+4)^2+y^2=16$と点$\mathrm{P}(4,\ 0)$がある.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
中央大学 私立 中央大学 2012年 第3問
$f(x)=x^2+x+1$とおく.曲線$y=f(x)$に原点から引いた接線の方程式を$y=mx$,$y=m^\prime x (m<m^\prime)$とおく.また,それぞれの接点の$x$座標を$c,\ c^\prime$とおく.このとき,$c<0<c^\prime$である.実数$a$に対して連立不等式
\[ y \leqq f(x),\quad y \geqq mx,\quad y \geqq m^\prime x,\quad a \leqq x \leqq a+1 \]
の表す領域の面積を$S(a)$で表す.このとき,次の問に答えよ.

(1)定数$m,\ m^\prime,\ c,\ c^\prime$を求めよ.
(2)$0<a \leqq c^\prime$のとき,$S(a)$を求めよ.
(3)$c \leqq a \leqq 0$のとき,$S(a)$を求めよ.
(4)$c \leqq a \leqq c^\prime$のとき,$S(a)$の最大値と最小値を求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。