タグ「座標」の検索結果

145ページ目:全2097問中1441問~1450問を表示)
東北学院大学 私立 東北学院大学 2012年 第2問
動点$\mathrm{P}$が$xy$平面上を図のように$\mathrm{A}_0(0,\ 0)$から,まず$x$軸に沿って$\mathrm{A}_1(2^{10},\ 0)$まで進み,次に左に直角に曲がって$\mathrm{A}_2(2^{10},\ 2^9)$まで進み,さらに左に直角に曲がって$\mathrm{A}_3(2^{10}-2^8,\ 2^9)$まで進む.以下同様に線分の長さが
\[ \overline{\mathrm{A}_n \mathrm{A}_{n+1}}=\frac{1}{2} \overline{\mathrm{A}_{n-1} \mathrm{A}_{n}} \quad (n \geqq 1) \]
を満たしながら左に直角に曲がりつつ進むとき,以下の問いに答えよ.

(1)$\overline{\mathrm{A}_n \mathrm{A}_{n+1}}<1$を満たす最小の$n$を求めよ.
(2)点$\mathrm{A}_6$の座標を求めよ.
(3)点$\mathrm{A}_{2k} (k \geqq 1)$の座標を$k$の式で表せ.
(図は省略)
南山大学 私立 南山大学 2012年 第2問
放物線$C:y=x^2-kx (k>0)$と直線$\ell:y=3x$がある.$C$と$\ell$の交点で原点$\mathrm{O}$以外の点を$\mathrm{A}$とする.$C$と$\ell$で囲まれた部分の面積を$S_1$,$C$と$x$軸で囲まれた部分の面積を$S_2$とする.

(1)$\mathrm{A}$の座標を$k$で表せ.
(2)$S_1$を$k$で表せ.
(3)$\mathrm{A}$を通り$x$軸に垂直な直線と,$x$軸および$C$で囲まれた部分の面積を$S_3$とする.$S_3$を$k$で表せ.
(4)$(3)$の$S_3$と$S_2$が等しいとき,$k$の値を求めよ.
南山大学 私立 南山大学 2012年 第2問
$2$つの曲線$C_1:y=-x^2+10$と$\displaystyle C_2:y=\frac{1}{2}x^2-6x+k$がある.ただし,$k$は実数とする.$C_1$,$C_2$はそれぞれ直線$\ell$に接し,$C_1$と$\ell$の接点の$x$座標を$a$,$C_2$と$\ell$の接点の$x$座標を$b$とする.

(1)$\ell$の方程式を,$a$を用いて表せ.
(2)$k$を$a$で表せ.
(3)$b>0$であり,$C_2$と$y$軸および$\ell$で囲まれた図形の面積が$\displaystyle \frac{9}{2}$であるとき,$a$の値を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\mathrm{AC}=10$,$\mathrm{BC}=6$,$\displaystyle \cos A=\frac{4}{5}$とし,辺$\mathrm{AC}$の中点を$\mathrm{M}$とする.このとき,$\tan A=[ア]$であり,$\triangle \mathrm{BCM}$の外接円の半径は$[イ]$である.
(2)関数$f(x)=|x-1|-|x+2|+|x-3|$が,$f(a)=0$を満たすとき,$a=[ウ]$である.また,$y=f(x)$のグラフと$x$軸で囲まれた図形の面積は$[エ]$である.
(3)$k$を正の実数とする.$3$次関数$f(x)=kx^3+3kx^2-9kx+3$の極大値は$[オ]$である.また,$f(x)=0$が正の実数解を持つような$k$の値の範囲は$[カ]$である.
(4)円$C:x^2+(y-2)^2=1$と点$\mathrm{A}(2,\ 0)$がある.この$C$上の点$\mathrm{P}$と$\mathrm{A}$を結ぶ線分$\mathrm{PA}$の中点を$\mathrm{Q}$とするとき,$\mathrm{Q}$の軌跡の方程式は$[キ]$である.また,$\mathrm{Q}$の軌跡と$C$が交わる点の$x$座標は$[ク]$である.
(5)$a>1$に対して最小値が$2$である関数$f(x)=\log_a (x^2-2x+3)$と,関数$g(x)=\log_2 (2x-1)^2$がある.このとき,$a=[ケ]$であり,$f(x)=g(x)$を満たす$x$の値は$[コ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
甲南大学 私立 甲南大学 2012年 第2問
座標平面上に点$\mathrm{A}(0,\ 2)$,点$\mathrm{B}(0,\ b)$,点$\mathrm{C}(c,\ 0)$がある.ただし,$b>2$,$c>2$とする.また,原点を$\mathrm{O}$とし,$\angle \mathrm{OCA}=\alpha$,$\angle \mathrm{OCB}=\beta$,$\angle \mathrm{ACB}=\theta$とする.このとき,以下の問いに答えよ.

(1)$\tan \alpha$を$c$で表せ.また,$\tan \beta$を$b,\ c$で表せ.
(2)$\tan \theta$を$b,\ c$で表せ.
(3)$\displaystyle \theta=\frac{\pi}{4}$のとき,$b$を$c$で表せ.
(4)$\displaystyle \theta=\frac{\pi}{4}$のとき,$b$と$c$がともに整数となるような$(b,\ c)$の組をすべて求めよ.
南山大学 私立 南山大学 2012年 第2問
$a,\ b$を正の定数とし,関数$f(x)=2x^3-3ax^2$と座標平面上の$2$つの曲線$C_1:y=f(x)$,$C_2:y=f(x)+b$を考える.

(1)$f(x)$の極大値と極小値を求めよ.
(2)区間$0 \leqq x \leqq 5$における$f(x)$の最小値を$a$で表せ.
(3)$a=1,\ b=5$として,同一平面上に$C_1$と$C_2$を図示せよ.
(4)$1$つの直線が$C_1$,$C_2$の両方の接線であるとき,その直線を$C_1$,$C_2$の共通接線という.$a=1$のとき,$C_1$と$C_2$に,傾き$12$の共通接線があるように$b$の値を定めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \left( \frac{1}{9} \right)^x-4 \left( \frac{1}{3} \right)^{x-1}+27 \leqq 0$を満たす$x$の範囲は$[ア]$であり, \\
$\log_2 \left( \log_5 (x+1)+\log_5 (x+3) \right)<1$を満たす$x$の範囲は$[イ]$である.
(2)整式$P(x)$を$(x+1)(x-2)$で割ると余りは$2x+9$,$(x+1)(x+2)$で割ると余りは$-10x-3$になる.このとき$P(x)$を$(x+1)(x-2)(x+2)$で割ると,余りは$[ウ]$となる.また,$P(x)$を$(x-2)(x+2)$で割ると,余りは$[エ]$となる.
(3)関数$f(x)=x^3+3ax^2+b (b>0)$があり,方程式$f(x)=0$は$3$つの異なる実数解をもつ.このとき,実数$a$と$b$が満たす関係は$[オ]$であり,$f(x) \leqq f(0)$となる$x$の範囲は$[カ]$である.
(4)面積が$S$の正方形がある.この正方形の$4$辺をそれぞれ$1:3$に内分する点をとり,これら$4$つの内分点を頂点とする新たな正方形をつくる.この操作によってできる新たな正方形の面積は$[キ]$である.新たにできた正方形に同じ操作をほどこして,さらに新しい正方形をつくる.この操作を少なくとも$[ク]$回おこなうと,最後にできた正方形の面積が$\displaystyle \frac{1}{100}S$以下になる.ただし,$\log_{10}2=0.3010$とする.
(5)放物線$y=x^2$上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとり,$\mathrm{A}$における接線を$\ell$とする.$\mathrm{A}$と$\mathrm{B}$の$x$座標をそれぞれ$a,\ b$とし,線分$\mathrm{AB}$を$t:1-t$に内分する点$\mathrm{P}$をとる($0<t<1$).$\mathrm{P}$を通り$y$軸と平行な直線が,$\ell$と交わる点を$\mathrm{Q}$,放物線と交わる点を$\mathrm{R}$とする.このとき,$\mathrm{QR}$の長さは$[ケ]$であり,$\mathrm{QR}:\mathrm{RP}=[コ]$である.
南山大学 私立 南山大学 2012年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円$C$と直線$\ell:y=x$がある.$C$上に点$\mathrm{P}$があり,$x$軸の正の部分を始線として,動径$\mathrm{OP}$の表す正の角を$\theta$とする.ただし,$\displaystyle \frac{1}{4}\pi<\theta<\pi$である.

(1)$\ell$に関して$\mathrm{P}$と対称な点$\mathrm{Q}$をとる.$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)$x$軸に関して$\mathrm{P}$と対称な点$\mathrm{R}$をとる.三角形$\mathrm{PQR}$の面積$S$を$\theta$を用いて表せ.
(3)$S$が最大になるときの$\theta$と$S$の値を求めよ.
明治大学 私立 明治大学 2012年 第3問
空欄$[ ]$に当てはまるものを入れよ.

$t$を正の実数とする.座標平面上の放物線$C_1:y=x^2$上の点$\mathrm{P}(t,\ t^2)$における$C_1$の接線を$\ell_1$とする.$\mathrm{P}$において$\ell_1$と直交する直線を$\ell_2$とし,$\mathrm{P}$において$\ell_2$に接する放物線$C_2:y=-x^2+ax+b$を考える.次の問に答えよ.
(1)$C_1$と$C_2$のもう一つの交点$\mathrm{Q}$は$([ア],\ [イ])$であり,線分$\mathrm{PQ}$の長さは$([ウ])^{[エ]}$である.
(2)$C_1$と$C_2$によって囲まれる部分の面積$S$は
\[ \frac{[オ]}{[カ]} \cdot ([キ])^{[ク]} \]
であり,$S$は$\displaystyle t=\frac{[ケ]}{[コ]}$のときに最小値$\displaystyle \frac{[サ]}{[シ]}$を取る.

(3)$C_2$の頂点$\mathrm{R}$は$([ス],\ [セ]+[ソ])$であり,$\triangle \mathrm{PQR}$の重心の軌跡は
\[ y=\frac{[タ]}{[チ]}x^2+\frac{[ツ]}{[テ]} \]
である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。