タグ「座標」の検索結果

137ページ目:全2097問中1361問~1370問を表示)
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
福井大学 国立 福井大学 2012年 第3問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における$C$の法線$m$と直線$\ell_1:x=a$に関して,以下の問いに答えよ.

(1)$\ell_1$と$m$のなす角を$\theta$とするとき,$\tan \theta$を$a$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(2)$m$に関して$\ell_1$と対称な直線を$\ell_2$とするとき,$\ell_2$の方程式を$a$を用いて表せ.
(3)$\ell_2$と$y$軸の交点を$\mathrm{P}$とおく.$a$が実数全体を動くとき,$\mathrm{P}$の$y$座標の最大値とそのときの$a$の値を求めよ.
(4)$a$を(3)で求めた値とするとき,曲線$C$,$y$軸および線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第4問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 1)$,$\mathrm{B}(-1,\ 1,\ 2)$を含む平面を$\alpha$とする.また$t$を実数として,$\mathrm{P}(1,\ 0,\ -t)$とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta \ (0^\circ \leqq \theta \leqq 180^\circ)$を求めよ.
(2)点$\mathrm{P}$が平面$\alpha$上にあるとき,$t$の値を求めよ.
(3)点$\mathrm{P}$が平面$\alpha$上にないとき,点$\mathrm{P}$を通り平面$\alpha$に垂直な直線と平面$\alpha$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
長崎大学 国立 長崎大学 2012年 第7問
原点$\mathrm{O}$を中心とし,半径1の円を$C$とする.次の問いに答えよ.

(1)直線$y=2$上の点$\mathrm{P}(t,\ 2)$から円$C$に2本の接線を引き,その接点を$\mathrm{M},\ \mathrm{N}$とする.直線$\mathrm{OP}$と弦$\mathrm{MN}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.ただし,$t$は実数とする.
(2)点$\mathrm{P}$が直線$y=2$上を動くとき,点$\mathrm{Q}$の軌跡を求めよ.
山口大学 国立 山口大学 2012年 第3問
2点$\mathrm{A}$,$\mathrm{B}$は,$\mathrm{AB}=2$を満たしながら放物線$\displaystyle C:y=\frac{1}{2}x^2-x+\frac{3}{2}$の上を動く点とする.このとき,次の問いに答えなさい.

(1)$\mathrm{AB}$の中点を$\mathrm{P}$とする.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$の$x$座標をそれぞれ$a,\ b,\ p$とするとき,$a+b$と$ab$の値をそれぞれ$p$を用いて表しなさい.
(2)$\mathrm{P}$の$y$座標を$p$を用いて表しなさい.
(3)$\mathrm{P}$の$x$座標に対して$\mathrm{P}$の$y$座標を定める関数を$y=f(x)$とする.2つの曲線$y=f(x)$,$\displaystyle y=\frac{1}{2}x^2-x+\frac{3}{2}$と2直線$x=0,\ x=2$で囲まれた図形の面積を求めなさい.
山口大学 国立 山口大学 2012年 第1問
$xy$平面上に点$\mathrm{A}(-1,\ 0)$と,原点を中心とする半径1の円$C$を考える.$C$上の点$\mathrm{P}$を通り$x$軸に垂直な直線を$\ell$とし,$\ell$と$x$軸の交点を$\mathrm{Q}$とする.このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の$x$座標を$a$とするとき,$f(a)=\mathrm{AQ}+\mathrm{PQ}$を$a$を用いて表しなさい.
(2)(1)で求めた関数$f(a)$の$-1 \leqq a \leqq 1$における最大値を求めなさい.
山口大学 国立 山口大学 2012年 第4問
$xy$平面において,直線$y=8$の上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$が,直線$y=0$の上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$,$\mathrm{Q}_4$,$\mathrm{Q}_5$が,それぞれ$x$座標の小さい順に並んでいる.これらを$y=8$上の点と$y=0$上の点ひとつずつからなる5つの組に分け,それぞれの組の2点を結んでできる5本の線分を考える.下図はその一例である.このとき,次の問いに答えなさい.
(図は省略)

(1)3本の線分$\mathrm{P}_i \mathrm{Q}_n$,$\mathrm{P}_j \mathrm{Q}_m$,$\mathrm{P}_k \mathrm{Q}_l$が1点$\mathrm{R}$で交わるとき,$\displaystyle \frac{\mathrm{P}_i \mathrm{P}_j \cdot \mathrm{Q}_l \mathrm{Q}_m}{\mathrm{P}_j \mathrm{P}_k \cdot \mathrm{Q}_m \mathrm{Q}_n}$を求めなさい.ただし,$i<j<k$かつ$l<m<n$であるとする.
(2)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,どのような結び方をしても3本の線分が1点で交わらないことを(1)を用いて背理法で示しなさい.
(3)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,交点の数の合計がちょうど2つになるような結び方は何通りあるかを答えなさい.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。