タグ「座標」の検索結果

136ページ目:全2097問中1351問~1360問を表示)
福島大学 国立 福島大学 2012年 第2問
座標平面上の3点$\mathrm{A}(9,\ 12)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(25,\ 0)$を頂点とする三角形$\mathrm{ABC}$および,三角形$\mathrm{ABC}$の内接円と外接円を考える.三角形$\mathrm{ABC}$の内接円は,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$とそれぞれ点$\mathrm{D},\ \mathrm{E},\ \mathrm{F}$で接する.また,三角形$\mathrm{ABC}$の内接円の中心と点$\mathrm{A}$を通る直線は,辺$\mathrm{BC}$と点$\mathrm{G}$で交わる.このとき,以下の問いに答えなさい.

(1)3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めなさい.
(2)線分$\mathrm{AE}$の長さを求めなさい.
(3)三角形$\mathrm{ABC}$の内接円の半径と中心の座標を求めなさい.
(4)点$\mathrm{G}$の座標を求めなさい.
(5)三角形$\mathrm{ABC}$の外接円の方程式を求めなさい.
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
東京農工大学 国立 東京農工大学 2012年 第1問
$a,\ b$は実数で$b>0$とする.行列
\[ A=\left( \begin{array}{cc}
a & b \\
-b & 1-a
\end{array} \right),\quad B=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \]
が$ABAB=E$を満たしている.ただし$E$は2次の単位行列とする.次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$n$を自然数とする.$A^n=E$を満たす最小の$n$を求めよ.
(3)座標平面上において,$a=2$のとき行列$A$の表す1次変換を$f$とおく.点$\mathrm{P}(1,\ 1)$が$f$によって移る点を$\mathrm{Q}$とし,$\mathrm{Q}$が$f$によって移る点を$\mathrm{R}$とする.このとき$\triangle \mathrm{PQR}$の面積$S$を求めよ.
電気通信大学 国立 電気通信大学 2012年 第1問
関数$\displaystyle f(x)=\frac{1}{x^2+1}$に対して,$xy$平面上の曲線$C:y=f(x)$を考える.このとき,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)曲線$C$の第$1$象限にある変曲点$\mathrm{P}$の座標を求めよ.
(3)変曲点$\mathrm{P}$における曲線$C$の接線$\ell$の方程式を求めよ.
(4)$\displaystyle x=\tan \theta \ \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とおく.このとき,不定積分
\[ I=\int \frac{dx}{x^2+1} \]
を$\theta$を用いて表せ.なお,不定積分の計算においては積分定数を省略してもよい.
(5)曲線$C$と接線$\ell$および$y$軸とで囲まれる部分の面積$S$を求めよ.
福井大学 国立 福井大学 2012年 第4問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における法線を$\ell$とし,$\ell$に関して点$(a,\ 0)$と対称な点を$\mathrm{B}$,直線$\mathrm{AB}$と$y$軸との交点を$\mathrm{P}$とする.点$\mathrm{P}$の$y$座標を$f(a)$とおくとき,以下の問いに答えよ.

(1)$f(a)$を$a$を用いて表せ.
(2)$a$が実数全体を動くとき,$f(a)$の最大値とそのときの$a$の値を求めよ.
(3)$a$を(2)で求めた値とするとき,曲線$C$,$y$軸と線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第1問
$k$は正の実数とする.$xy$平面において,$x$軸および2つの曲線
\[ C_1:y=k \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=\frac{1}{k}\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
で囲まれた図形の面積を$S(k)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\cos \alpha$および$\sin \alpha$を$k$を用いて表せ.
(2)$S(k)$を$k$を用いて表せ.
(3)$k$が$k>0$の範囲を動くときの$S(k)$の最大値を求めよ.
山形大学 国立 山形大学 2012年 第2問
$0<a \leqq 1$とする.このとき,次の問に答えよ.

(1)曲線$y=-x^2+1$と曲線$y=-(x-a)^2+1$の交点の座標を求めよ.
(2)$x$軸,$y$軸および曲線$y=-x^2+1 \ (x \geqq 0)$で囲まれた図形を$A$とし,$x$軸,直線$x=a$および曲線$y=-(x-a)^2+1 \ (x \leqq a)$で囲まれた図形を$B$とする.このとき,$A$と$B$の共通部分の面積$S(a)$を求めよ.
(3)$S(a)=S(1)$を満たす$a$の値を求めよ.ただし$0<a<1$とする.
(4)$S(a)$の最大値を求めよ.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
鳥取大学 国立 鳥取大学 2012年 第4問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。