タグ「座標」の検索結果

131ページ目:全2097問中1301問~1310問を表示)
九州工業大学 国立 九州工業大学 2012年 第3問
$\alpha>1,\ x>0$とする.Oを原点とする座標平面上に3点A$(0,\ 1)$,B$(0,\ \alpha)$,P$(\sqrt{x},\ 0)$がある.次に答えよ.

(1)$\sin \angle \text{OPB}$と$\sin \angle \text{APB}$を$\alpha$と$x$を用いて表せ.
(2)$\sin \angle \text{APB}$を$x$の関数と考え,その関数を$f(x)$とおく.$f(x)$の最大値を$\alpha$を用いて表せ.
(3)(2)で求めた最大値が$\displaystyle \frac{1}{2}$となる$\alpha$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2012年 第1問
3次関数
\[ f(x)=x^3-(1+2\cos \theta)x^2+(1+2\cos \theta)x-1 \]
について,以下の問いに答えよ.ただし,$0 \leqq \theta < 2\pi$とする.

(1)方程式$f(x)=0$の実数解を求めよ.
(2)関数$f(x)$が極値をもつための$\theta$の範囲を求めよ.
(3)曲線$y=f(x)$の変曲点の$x$座標を$g(\theta)$と表す.$\theta$を$0 \leqq \theta < 2\pi$の範囲で動かしたときの$g(\theta)$の最大値と最小値,および,そのときの$\theta$の値を求めよ.
奈良女子大学 国立 奈良女子大学 2012年 第2問
$\theta$を$0 \leqq \theta \leqq 2\pi$をみたす実数とする.$2$次関数$f(x)=x^2-2(\sin \theta)x+\sin^2 \theta$について,次の問いに答えよ.

(1)$f(x)$のグラフの頂点の座標を$\theta$を用いて表せ.
(2)$f(x)$の区間$\displaystyle -\frac{1}{2} \leqq x \leqq \frac{1}{2}$における最大値$M(\theta)$を$\theta$を用いて表せ.
(3)(2)で求めた$M(\theta)$に対して,$\displaystyle \int_0^{2\pi}M(\theta) \, d\theta$の値を求めよ.
佐賀大学 国立 佐賀大学 2012年 第1問
座標空間内で,原点$\mathrm{O}$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(b_1,\ b_2,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$を頂点とする正四面体を考える.ただし,$b_2$と$c_3$は正とする.次の問いに答えよ.

(1)$b_1,\ b_2$および$c_1,\ c_2,\ c_3$を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(3)$\mathrm{P}$は直線$\mathrm{BC}$上の点で,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとする.$\mathrm{P}$の座標を求めよ.また$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
岩手大学 国立 岩手大学 2012年 第4問
\begin{spacing}{2}
行列$A=\left( \begin{array}{cc}
\displaystyle -\frac{1}{4} & \displaystyle -\frac{\sqrt{3}}{4} \\
\displaystyle \frac{\sqrt{3}}{4} & \displaystyle -\frac{1}{4}
\end{array} \right)$について,次の問いに答えよ.
\end{spacing}


(1)$A^2,\ A^3$を求めよ.
(2)$n$を自然数とし,$\biggl( \begin{array}{c}
x_n \\
y_n
\end{array} \biggr)=A^n \biggl( \begin{array}{c}
1 \\
0
\end{array} \biggr)$とするとき,$\biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr),\ \biggl( \begin{array}{c}
x_2 \\
y_2
\end{array} \biggr),\ \biggl( \begin{array}{c}
x_3 \\
y_3
\end{array} \biggr)$を求めよ.
(3)$xy$平面上の点P$_n$の座標を,(2)で定めた$(x_n,\ y_n)$とする.原点Oを中心とし,OP$_n$を半径とする円の面積を$S_n$とするとき,$S_1,\ S_2,\ S_3$を求めよ.
(4)(3)で定めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
大分大学 国立 大分大学 2012年 第2問
$t$を実数とし,点Pの座標を$(t,\ -t^2)$とする.点Pと直線$\ell_1:2x+y+3=0$の距離を$d_1$とし,点Pと直線$\ell_2:2x-y+4=0$の距離を$d_2$とする.また,$d=d_1+d_2$とおく.

(1)$t=2$のとき,$d$の値を求めなさい.
(2)点Pが直線$\ell_1$上またはその上側にあるための$t$の条件を求めなさい.
(3)$\displaystyle d=\frac{13}{\sqrt{5}}$となる$t$の値を求めなさい.
佐賀大学 国立 佐賀大学 2012年 第1問
座標空間内で,原点$\mathrm{O}$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(b_1,\ b_2,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$を頂点とする正四面体を考える.ただし,$b_2$と$c_3$は正とする.次の問いに答えよ.

(1)$b_1,\ b_2$および$c_1,\ c_2,\ c_3$を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(3)$\mathrm{P}$は直線$\mathrm{BC}$上の点で,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとする.$\mathrm{P}$の座標を求めよ.また$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
大分大学 国立 大分大学 2012年 第3問
曲線$C:y=x^2+px+q$と$y$軸との交点をQとし,$x$座標$t$が正である曲線$C$上の点をPとする.点Pにおける曲線$C$の接線を$\ell$とする.曲線$C$,接線$\ell$および$y$軸で囲まれた部分の面積を$S_1$とし,曲線$C$と直線PQで囲まれた部分の面積を$S_2$とする.

(1)$\ell$の方程式を求めなさい.
(2)$S_1$を$t$で表しなさい.
(3)$S_1:S_2$を求めなさい.
大分大学 国立 大分大学 2012年 第4問
$t$を実数とし,点$\mathrm{P}$の座標を$(t,\ -t^2)$とする.点Pと直線$\ell_1:2x+y+3=0$の距離を$d_1$とし,点$\mathrm{P}$と直線$\ell_2:2x-y+4=0$の距離を$d_2$とする.また,$d=d_1+d_2$とおく.

(1)$t=2$のとき,$d$の値を求めなさい.
(2)点$\mathrm{P}$が直線$\ell_1$上またはその上側にあるための$t$の条件を求めなさい.
(3)$(2)$のとき,$d$の最小値とそのときの$t$の値を求めなさい.
大分大学 国立 大分大学 2012年 第3問
$t$を実数とし,点Pの座標を$(t,\ -t^2)$とする.点Pと直線$\ell_1:2x+y+3=0$の距離を$d_1$とし,点Pと直線$\ell_2:2x-y+4=0$の距離を$d_2$とする.また,$d=d_1+d_2$とおく.

(1)$t=2$のとき,$d$の値を求めなさい.
(2)点Pが直線$\ell_1$上またはその上側にあるための$t$の条件を求めなさい.
(3)$d$の最小値とそのときの$t$の値を求めなさい.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。