タグ「座標」の検索結果

130ページ目:全2097問中1291問~1300問を表示)
金沢大学 国立 金沢大学 2012年 第2問
曲線$C : y = |x^2-2x|$と傾きが$m$の直線$\ell: y = mx$ついて,次の問いに答えよ.

(1)曲線$y=-x^2 +2x$と$\ell$が接する$m$の値を求めよ.
(2)$C$と$\ell$が原点以外の相異なる2点で交わるような$m$の範囲を求めよ.また,そのときの2つの交点の座標を$m$を用いて表せ.
(3)$m$は(2)で求めた範囲にあるとする.$x \geqq 2,\ y \leqq mx,\ y \geqq |x^2-2x|$で定まる部分の面積$S$を$m$を用いて表せ.
金沢大学 国立 金沢大学 2012年 第1問
$\mathrm{O}$を原点とする座標平面に点$\mathrm{A}(0,\ \sin \theta)$,$\mathrm{B}(\cos \theta,\ 0)$がある.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.また,点$\mathrm{C}$を$\displaystyle \mathrm{AC}=2,\ \angle \mathrm{ABC}=\frac{\pi}{2}$を満たす第1象限の点とする.さらに,点$\mathrm{C}$から$x$軸に垂線$\mathrm{CD}$を下ろす.次の問いに答えよ.

(1)$\mathrm{AB}$,$\mathrm{BC}$を求めよ.また,$\angle \mathrm{OBA}$と$\angle \mathrm{CBD}$および点$\mathrm{C}$の座標を$\theta$を用いて表せ.
(2)台形$\mathrm{AODC}$の面積を$S$とするとき,$\displaystyle S \leqq 1+\frac{\sqrt{3}}{2}$を示せ.また,等号が成り立つとき,$\theta$の値を求めよ.
(3)$\mathrm{AO}+\mathrm{CD} \leqq 2$を示せ.また,等号が成り立つとき,$\theta$の値を求めよ.
(図は省略)
金沢大学 国立 金沢大学 2012年 第3問
$\log_{10}2 = 0.3010,\ \log_{10}3 = 0.4771$とする.次の問いに答えよ.

(1)$\displaystyle \log_{10} \left(\frac{2}{3}\right),\ \log_{10} \left( \frac{1}{2} \right)$の値を求めよ.
(2)$\displaystyle \left( \frac{2}{3} \right)^m \geqq \frac{1}{10},\ \left( \frac{1}{2} \right)^n \geqq \frac{1}{10}$を満たす最大の自然数$m,\ n$を求めよ.
(3)連立不等式$\displaystyle \left( \frac{2}{3} \right)^x \left( \frac{1}{2} \right)^y \geqq \frac{1}{10},\ x \geqq 0,\ y \geqq 0$の表す領域を座標平面に図示せよ.
(4)$\displaystyle \left( \frac{2}{3} \right)^m \left( \frac{1}{2} \right)^n \geqq \frac{1}{10}$を満たす自然数$m$と$n$の組$(m,\ n)$をすべて求めよ.
広島大学 国立 広島大学 2012年 第5問
$n$は自然数とし,点Pは次の規則にしたがって座標平面上を動くとする.\\
規則:\\
\quad (A) \ Pは,はじめに点$(1,\ 2)$にある.\\
\quad (B) \ さいころを投げて2以下の目が出ればPは原点を中心に反時計回りに$120^\circ$回転し,3以上の目が出れば時計回りに$60^\circ$回転する.\\
\quad (C) \ (B)を$n$回繰り返す.\\
ただし,さいころの目の出方は同様に確からしいとする.次の問いに答えよ.

(1)$n=3$のとき,出た目が$4,\ 1,\ 2$であったとする.このときPが最後に移った点の座標を求めよ.
(2)$n=3$のとき,Pが点$(1,\ 2)$にある確率を求めよ.
(3)$n=6$のとき,Pが点$(-1,\ -2)$にある確率を求めよ.
(4)$n=3m$のとき,Pが点$(1,\ 2)$にある確率を求めよ.ただし,$m$は自然数とする.
筑波大学 国立 筑波大学 2012年 第2問
曲線$\displaystyle C:y=\frac{1}{x+2} \ (x>-2)$を考える.曲線$C$上の点P$_1 \displaystyle (0,\ \frac{1}{2})$における接線を$\ell_1$とし,$\ell_1$と$x$軸との交点をQ$_1$,点Q$_1$を通り$x$軸と垂直な直線と曲線$C$との交点をP$_2$とおく.以下同様に,自然数$n \ (n \geqq 2)$に対して,点P$_n$における接線を$\ell_n$とし,$\ell_n$と$x$軸との交点をQ$_n$,点Q$_n$を通り$x$軸と垂直な直線と曲線$C$との交点をP$_{n+1}$とおく.

(1)$\ell_1$の方程式を求めよ.
(2)P$_n$の$x$座標を$x_n \ (n \geqq 1)$とする.$x_{n+1}$を$x_n$を用いて表し,$x_n$を$n$を用いて表せ.
(3)$\ell_n$,$x$軸,$y$軸で囲まれる三角形の面積$S_n$を求め,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
筑波大学 国立 筑波大学 2012年 第5問
以下の問いに答えよ.

(1)座標平面において原点のまわりに角$\theta \ (0<\theta<\pi)$だけ回転する移動を表す行列を$A$とする.$A$が等式$A^2-A+E=O$を満たすとき,$\theta$と$A$を求めよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\ O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$である.
(2)直線$y=\sqrt{3}x$に関する対称移動を表す行列$B$を求めよ.
(3)直線$y=kx$に関する対称移動を表す行列$C$とする.(1),(2)において求めた行列$A,\ B$に対して$BC=A$が成り立つとき,$k$を求めよ.
筑波大学 国立 筑波大学 2012年 第6問
2つの双曲線$C:x^2-y^2=1,\ H:x^2-y^2=-1$を考える.双曲線$H$上の点$\mathrm{P}(s,\ t)$に対して,方程式$sx-ty=1$で定まる直線を$\ell$とする.

(1)直線$\ell$は点$\mathrm{P}$を通らないことを示せ.
(2)直線$\ell$と双曲線$C$は異なる$2$点$\mathrm{Q}$,$\mathrm{R}$で交わることを示し,$\triangle \mathrm{PQR}$の重心$\mathrm{G}$の座標を$s,\ t$を用いて表せ.
(3)(2)における$3$点$\mathrm{G}$,$\mathrm{Q}$,$\mathrm{R}$に対して,$\triangle \mathrm{GQR}$の面積は点$\mathrm{P}(s,\ t)$の位置によらず一定であることを示せ.
防衛医科大学校 国立 防衛医科大学校 2012年 第2問
座標平面上の点B$(0,\ 1)$を中心とする半径1の円を$C_0$,$a > 0$とし,点A$(a,\ 0)$を通り$C_0$に接する2直線のうち$x$軸でない方を$\ell$とする.また,$C_0$,$x$軸,$\ell$によって囲まれる領域(境界も含む)の内部にあって,$C_0$,$x$軸,$\ell$に接する円を$C_1$,$C_1$の半径を$r$とする.さらに,$C_0$,$C_1$,$x$軸によって囲まれる領域(境界を含む)の内部にあって,$C_0$,$C_1$,$x$軸に接する円を$C_2$,$C_2$の半径を$s$とする.このとき,以下の問に答えよ.

(1)次の問いに答えよ.

\mon[(i)] $r$を$a$で表せ.
\mon[(ii)] $a =\sqrt{3}$のとき,$r$はいくらか.

(2)次の問いに答えよ.

\mon[(i)] $s$を$a$で表せ.
\mon[(ii)] $\displaystyle a=\frac{3}{4}$のとき,$s$はいくらか.

(3)極限値$\displaystyle \lim_{a \to 0}\frac{r}{a^2},\ \lim_{a \to 0}\frac{s}{r}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第4問
$n,\ r$は$n \geqq r$を満たす正の整数であるとし,$x,\ y$ともに$0$以上$n$以下の整数であるような座標平面上の点$(x,\ y)$の集合を$S$とする.また,曲線$x^2+y^2=r^2 \ (x \geqq 0,\ y \geqq 0)$,$x$軸,$y$軸によって囲まれる領域(境界を含む)を$D$とする.ここで,$S$からランダムに$1$点を選ぶ試行を考える.このとき,以下の問に答えよ.

(1)$n=10,\ r=5$のとき,選ばれた点が$D$内にある確率はいくらか.
(2)$[\,x\,]$は$x$を超えない最大の整数を表す記号である.直線$x=t$上の点で$D$に含まれる$S$の要素の個数をこの記号を用いて表せ.ここで,$t$は0以上$r$以下の整数とする.
(3)$r=n$とし,選ばれた点が$D$内に含まれる確率を$P(n)$とする.このとき,極限値$\displaystyle \lim_{n \to \infty}P(n)$を求めよ.
弘前大学 国立 弘前大学 2012年 第3問
座標平面に点$\mathrm{E}(1,\ 0)$,$\mathrm{F}(1,\ 1)$,$\mathrm{F}^\prime(-5,\ 11)$がある.さらに点$\mathrm{E}^\prime$は第1象限にあり,$\mathrm{O}$を原点とするとき,三角形$\mathrm{OE}^\prime \mathrm{F}^\prime$は角$\mathrm{E}^\prime$が直角の二等辺三角形である.

(1)点$\mathrm{E}^\prime$の座標を求めよ.
(2)点$\mathrm{E}$を点$\mathrm{E}^\prime$に,点$\mathrm{F}$を点$\mathrm{F}^\prime$に移すような1次変換を$f$とする.$f$を表す行列を求めよ.
(3)座標平面に三角形$\mathrm{OPQ}$があり,(2)の1次変換$f$により点$\mathrm{P}$が点$\mathrm{P}^\prime$に,点$\mathrm{Q}$が点$\mathrm{Q}^\prime$に移るとする.三角形$\mathrm{OPQ}$と三角形$\mathrm{OP}^\prime \mathrm{Q}^\prime$は相似であることを示せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。