タグ「座標」の検索結果

129ページ目:全2097問中1281問~1290問を表示)
信州大学 国立 信州大学 2012年 第1問
座標平面上に,だ円$C:2x^2+y^2=1$と点P$(t,\ \sqrt{2}t) (t>0)$がある.点Pが$C$の外側にあるとして,Pから$C$へ接線を2本ひく.2つの接点を$\text{T}_1,\ \text{T}_2$とおき,$\theta = \angle \text{T}_1\text{PT}_2$とおく.次の問に答えよ.

(1)$\displaystyle t=\frac{1}{\sqrt{2}}$のとき,$\theta$を求めよ.
(2)2つの接線の傾きを$m_1,\ m_2$とするとき,$m_1+m_2,\ m_1m_2$を$t$で表せ.
(3)$\cos \theta$を$t$で表せ.
信州大学 国立 信州大学 2012年 第2問
$\displaystyle f(x) = \frac{x+\sqrt{3}}{\sqrt{x^2+1}}$について,次の問に答えよ.

(1)$y=f(x)$の増減,極値,凹凸を調べ,グラフの概形をかけ.ただし,変曲点の$y$座標は求めなくてよい.
(2)$y=f(x)$と$x$軸および$y$軸とで囲まれる図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
東京大学 国立 東京大学 2012年 第1問
座標平面上の点$(x,\ y)$が次の方程式を満たす.
\[ 2x^2+4xy+3y^2+4x+5y-4=0 \]
このとき,$x$のとりうる最大の値を求めよ.
東京大学 国立 東京大学 2012年 第2問
実数$t$は$0<t<1$を満たすとし,座標平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(t,\ 0)$を考える.また線分$\mathrm{AB}$上の点$\mathrm{D}$を$\angle \mathrm{ACO}=\angle \mathrm{BCD}$となるように定める.$t$を動かしたときの三角形$\mathrm{ACD}$の面積の最大値を求めよ.
東京大学 国立 東京大学 2012年 第4問
座標平面上の放物線$C$を$y=x^2+1$で定める.$s,\ t$は実数とし$t<0$を満たすとする.点$(s,\ t)$から放物線$C$へ引いた接線を$\ell_1,\ \ell_2$とする.

(1)$\ell_1,\ \ell_2$の方程式を求めよ.
(2)$a$を正の実数とする.放物線$C$と直線$\ell_1,\ \ell_2$で囲まれる領域の面積が$a$となる$(s,\ t)$を全て求めよ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) \ (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.
(3)$\triangle \mathrm{ABC}$が$\angle \mathrm{A}$を直角とする直角二等辺三角形のとき,$a,\ b$の値を求めよ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) \ (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.またそのとき,線分$\mathrm{AC}$,$\mathrm{BC}$と放物線$y=x^2$で囲まれた図形の面積を求めよ.
(3)$\triangle \mathrm{ABC}$が$\angle \mathrm{A}$を直角とする直角二等辺三角形のとき,$a,\ b$の値を求めよ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.
(3)$\triangle \mathrm{ABC}$が直角二等辺三角形となるような$a,\ b$の組をすべて求めよ.
広島大学 国立 広島大学 2012年 第2問
放物線$\displaystyle C:y=\frac{1}{2}x^2-\frac{1}{2}$上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{A}$の$x$座標は$3$である.点$\mathrm{A}$,点$\mathrm{B}$における$C$の接線をそれぞれ$\ell,\ m$とし,$\ell$と$m$の交点を$\mathrm{P}$とおくと,$\angle \mathrm{APB} = 45^\circ$であった.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$m$の傾きを求めよ.
(3)点$\mathrm{P}$の座標を求めよ.
(4)$C,\ \ell,\ m$で囲まれた図形において,不等式$x \geqq 0$を満たす部分の面積$S$を求めよ.
静岡大学 国立 静岡大学 2012年 第4問
$a_1$を$\displaystyle \frac{\pi}{12} < a_1 < \frac{\pi}{4}$を満たす数とし,$\{a_n\}$を
\[ a_{n+1} = 1-\sin \;a_n \ (n=1,\ 2,\ 3,\ \cdots) \]
で定められる数列とする.このとき,次の問いに答えよ.

(1)直線$y=1-x$と曲線$y=\sin x$は,$\displaystyle \frac{\pi}{12} < x < \frac{\pi}{4}$の範囲でただ1つの交点をもつことを示せ.
(2)$n$を自然数とするとき,不等式$\displaystyle \frac{\pi}{12} < a_n < \frac{\pi}{4}$を示せ.
(3)(1)の交点の$x$座標を$\alpha$とするとき,$\displaystyle \lim_{n \to \infty}a_n=\alpha$が成り立つことを示せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。