タグ「座標」の検索結果

121ページ目:全2097問中1201問~1210問を表示)
早稲田大学 私立 早稲田大学 2013年 第2問
中心$\mathrm{A}(1,\ 1)$,半径$1$の円を$C$とする.原点を通り円$C$と異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わる直線を$\ell$とする.$\mathrm{P}$,$\mathrm{Q}$における円$C$の$2$本の接線が直交するとき,次の問に答えよ.

(1)$\triangle \mathrm{APQ}$の面積$S$を求めよ.
(2)直線$\ell$の傾きを求めよ.
(3)$2$本の接線の交点$\mathrm{R}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
次の問に答えよ.

(1)${13}^{13}$を$144$で割ったときの余りは$[ア]$である.
(2)空間内に$3$点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(3,\ 5,\ 2)$,$\mathrm{C}(1,\ 2,\ 1)$がある.点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$としたとき,点$\mathrm{C}$との距離が最小となる$\ell$上の点の座標は
\[ \left( \frac{[ウ]}{[イ]},\ \frac{[エ]}{[イ]},\ \frac{[オ]}{[イ]} \right) \]
である.
立教大学 私立 立教大学 2013年 第3問
座標平面上に放物線$C:y=ax^2+1$がある.放物線$C$上の点$\mathrm{P}$における接線を$\ell$とし,点$\mathrm{P}$の$x$座標を$p$とする.ただし,$a>0$,$p>0$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$a,\ p$を用いて表せ.
(2)直線$\ell$,放物線$C$,および$y$軸で囲まれる部分の面積$S$を$a,\ p$を用いて表せ.
(3)直線$\ell$と原点との距離が$1$のとき,$S$を$a$を用いて表せ.
立教大学 私立 立教大学 2013年 第2問
座標平面上に放物線$C:y=x^2+(2-a)x+3-a$がある.放物線$C$上の点$\mathrm{P}(-1,\ 2)$における接線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$a$を用いて表せ.
(2)直線$\ell$が$x$軸の正の部分と交わり,かつ$y$軸の正の部分と交わるような$a$の値の範囲を求めよ.
(3)$a$の値が$(2)$で求めた範囲にあるとする.$x$軸,$y$軸,直線$\ell$で囲まれる三角形の面積を$S_1$とし,また,$y$軸,直線$\ell$,放物線$C$で囲まれる図形の面積を$S_2$とする.$S_1=3S_2$となるとき,$a$の値を求めよ.
立教大学 私立 立教大学 2013年 第3問
座標平面上に点$\mathrm{A}(2,\ 0)$,点$\mathrm{B}(0,\ 2)$があり,点$\mathrm{P}(x,\ y)$は$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=0$を満たしている.このとき,次の問に答えよ.

(1)点$\mathrm{P}$の軌跡の方程式を求めよ.
(2)線分$\mathrm{PA}$の長さが$\sqrt{2}$となるとき,点$\mathrm{P}$の座標を求めよ.
(3)線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.点$\mathrm{P}(x,\ y)$について$x>0$,$y=1$であるとき,$\angle \mathrm{AMP}$を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
$2$つの曲線$y=x^3-x \cdots\cdots①$および$y={(x-a)}^3-(x-a) \cdots\cdots②$がある.ただし,$a>0$とする.次の問に答えよ.

(1)$②$が$x=x_1$で極大値,$x=x_2$で極小値をとり,$x=x_1,\ x_2$における曲線$②$上の点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)曲線$①,\ ②$が異なる$2$点で交わるとき,$a$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$①,\ ②$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.$\beta-\alpha$を$a$を用いて表せ.
(4)$(2)$のとき,曲線$①,\ ②$で囲まれた部分の面積$S$を$a$を用いて表せ.
立教大学 私立 立教大学 2013年 第2問
図のように,座標平面上に,$x$座標が$0,\ 1,\ 2$,$y$座標が$0,\ 1,\ 2$である$9$個の点がある.これらの$9$点から$1$点を選ぶ試行を$3$回くり返すことで$3$点を選ぶ.ただし,どの点を選ぶ確率も等しいとする.このとき,次の問に答えよ.

(1)$3$点とも原点$\mathrm{O}$になる確率を求めよ.
(2)$3$点が同一の点になる確率を求めよ.
(3)$3$点のうち$2$点だけが同一の点になる確率を求めよ.
(4)$3$点とも異なる点であり,かつ一直線上に並ぶ確率を求めよ.
(5)$3$点を頂点とする三角形ができる確率を求めよ.
(図は省略)
立教大学 私立 立教大学 2013年 第3問
座標平面上に曲線$C:y=x^2 (x \geqq 0)$がある.この曲線$C$上の点$\mathrm{P}(t,\ t^2)$における接線を$\ell$,点$\mathrm{P}$を通り直線$\ell$に垂直な直線を$m$とする.ただし,$t>0$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)曲線$C$,直線$\ell$,$x$軸で囲まれた部分の面積を$S$とする.$S$を$t$を用いて表せ.
(3)直線$m$の方程式を$t$を用いて表せ.
(4)曲線$C$,直線$m$,$y$軸で囲まれた部分の面積を$T$とする.$T$を$t$を用いて表せ.
(5)$S:T=1:9$となるとき,点$\mathrm{P}$の座標を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
東京医科大学 私立 東京医科大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)座標平面上の放物線$C:y=a(x-b)^2$($a,\ b$は正の定数)が点$\displaystyle \mathrm{A} \left( \frac{4}{5},\ \frac{3}{5} \right)$を通り,点$\mathrm{A}$における$C$の法線が原点$\mathrm{O}(0,\ 0)$を通るとき,$\displaystyle a=\frac{[アイ]}{[ウエ]}$,$\displaystyle b=\frac{[オカ]}{[キク]}$である.
(2)不等式
\[ \log (n+9)-\log (n+8)<\frac{1}{100} \]
をみたす最小の正の整数$n$の値は$n=[ケコ]$である.ただし,対数は自然対数とする.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。