タグ「座標」の検索結果

120ページ目:全2097問中1191問~1200問を表示)
東京女子大学 私立 東京女子大学 2013年 第4問
座標平面において点$\mathrm{C}(1,\ 1)$を中心とする半径$1$の円と曲線$\displaystyle y=\frac{1}{x}$の$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とし,その$x$座標をそれぞれ$\alpha,\ \beta$とする.ただし$0<\alpha<\beta$とする.

(1)$\alpha+\beta$および$\alpha \beta$を求めよ.
(2)$\cos \angle \mathrm{ACB}$を求めよ.
東京女子大学 私立 東京女子大学 2013年 第7問
座標平面において点$\displaystyle \mathrm{A}_n \left( 1,\ \frac{1}{n} \right)$,$\displaystyle \mathrm{B} \left( 1-\frac{1}{n},\ 0 \right)$および$\mathrm{O}(0,\ 0)$を頂点とする三角形$\mathrm{OA}_n \mathrm{B}_n$の外接円の半径を$R_n$とおく.ただし$n$は$2$以上の整数とする.

(1)$R_n$を$n$の式で表せ
(2)$\displaystyle \lim_{n \to \infty} R_n$を求めよ.
東京女子大学 私立 東京女子大学 2013年 第8問
座標平面における$2$つの曲線$\displaystyle C_1:y=\frac{3}{5}x^2+\frac{2}{5}x$と$C_2:x=3y^2-2y$について,以下の設問に答えよ.

(1)$C_1$と$C_2$の交点を求めよ.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
津田塾大学 私立 津田塾大学 2013年 第3問
点$\mathrm{A}(1,\ 0,\ 1)$を通り,ベクトル$\overrightarrow{n}=(2,\ 1,\ -1)$に垂直な平面$\alpha$を考える.

(1)平面$\alpha$上の点$\mathrm{P}(x,\ y,\ z)$に関して
\[ 2x+y-z=1 \]
が成り立つことを示せ.
(2)平面$\alpha$に関して点$\mathrm{B}(3,\ 2,\ 1)$と対称な点$\mathrm{C}$の座標を求めよ.
(3)点$\mathrm{B}$と点$\mathrm{Q}(1,\ 4,\ 5)$と平面$\alpha$上の点$\mathrm{R}$が正三角形の$3$頂点となるとき,点$\mathrm{R}$の座標を求めよ.
青山学院大学 私立 青山学院大学 2013年 第4問
$\mathrm{O}$を原点とする座標空間に,$2$点$\mathrm{A}(-1,\ 0,\ 1)$,$\mathrm{B}(a,\ b,\ 0)$がある.線分$\mathrm{OA}$上に点$\mathrm{P}$をとり,$\displaystyle t=\frac{\mathrm{OP}}{\mathrm{OA}}$とする.このとき,$0 \leqq t \leqq 1$である.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{P}$が線分$\mathrm{OA}$上を動くとき,線分$\mathrm{PB}$の長さの最小値を求めよ.
(3)$(2)$で求めた最小値が$1$となるような点$(a,\ b)$全体が作る図形を,座標平面上に図示せよ.
青山学院大学 私立 青山学院大学 2013年 第5問
$a>1$とする.関数$\displaystyle f(x)=\frac{e^x}{e^x+a}$について,次の問に答えよ.

(1)$y=f(x)$のグラフは変曲点をただ$1$つもつ.この変曲点の座標を$a$を用いて表せ.
(2)$(1)$で求めた変曲点を通り,$y$軸に平行な直線を$\ell$とする.$y=f(x)$のグラフと$x$軸,$y$軸および直線$\ell$で囲まれた図形の面積$S$を$a$を用いて表せ.
(3)極限$\displaystyle \lim_{a \to \infty} S$を求めよ.
青山学院大学 私立 青山学院大学 2013年 第4問
$a$を正の定数とし,関数 \makebox{$y=a \cos x$} \ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_1$,関数 \makebox{$y=\sin x$} \ $\displaystyle \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_2$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\theta$とするとき,$\sin \theta$と$\cos \theta$を$a$を用いて表せ.
(2)$C_1$と$x$軸,$y$軸で囲まれた図形が,$C_2$によって面積の等しい$2$つの部分に分かれるとする.このとき,$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
次の問に答えよ.

(1)${13}^{13}$を$144$で割ったときの余りは$[ア]$である.
(2)空間内に$3$点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(3,\ 5,\ 2)$,$\mathrm{C}(1,\ 2,\ 1)$がある.点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$としたとき,点$\mathrm{C}$との距離が最小となる$\ell$上の点の座標は
\[ \left( \frac{[ウ]}{[イ]},\ \frac{[エ]}{[イ]},\ \frac{[オ]}{[イ]} \right) \]
である.
早稲田大学 私立 早稲田大学 2013年 第2問
座標平面上の$3$点を$\mathrm{A}(0,\ 6)$,$\displaystyle \mathrm{B} \left( -\frac{6}{5},\ 0 \right)$,$\mathrm{C}(6,\ 0)$とする.$2$つの半直線$\mathrm{AB}$,$\mathrm{AC}$と接する$2$次曲線を
\[ y=ax^2+bx+c \]
とし,$a$を$c$で表すと,$a=[ク]$である.

この$2$次曲線のうち点$(4,\ 1)$を通る曲線は$2$つある.このうち$y$切片の小さい方の$2$次曲線は
\[ y=[ケ]x^2+[コ]x-[サ] \]
であり,この曲線と$x$軸で囲まれる部分の面積は$[シ]$である.
早稲田大学 私立 早稲田大学 2013年 第1問
放物線$C:y^2=4px (p>0)$の焦点$\mathrm{F}(p,\ 0)$を通る$2$直線$\ell_1$,$\ell_2$は互いに直交し,$C$と$\ell_1$は$2$点$\mathrm{P}_1$,$\mathrm{P}_2$で,$C$と$\ell_2$は$2$点$\mathrm{Q}_1$,$\mathrm{Q}_2$で交わるとする.次の問に答えよ.

(1)$\ell_1$の方程式を$x=ay+p$と置き,$\mathrm{P}_1$,$\mathrm{P}_2$の座標をそれぞれ$(x_1,\ y_1)$,$(x_2,\ y_2)$とする.$y_1+y_2$,$y_1y_2$を$a$と$p$で表せ.
(2)$\displaystyle \frac{1}{\mathrm{P}_1 \mathrm{P}_2}+\frac{1}{\mathrm{Q}_1 \mathrm{Q}_2}$は$\ell_1$,$\ell_2$のとり方によらず一定であることを示せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。