タグ「座標」の検索結果

115ページ目:全2097問中1141問~1150問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
神奈川大学 私立 神奈川大学 2013年 第2問
放物線$C:y=ax(x-b)$について,以下の問いに答えよ.ただし,$a,\ b$は定数とする.

(1)放物線$C$の頂点の座標を$a$と$b$で表せ.
(2)放物線$C$の頂点の座標が$(4,\ -12)$のとき,$a$と$b$を求めよ.
(3)$a$と$b$が$(2)$で求めた値であるとき,$xy$平面上で放物線$C$と$x$軸によって囲まれた部分の面積$S$を求めよ.
神奈川大学 私立 神奈川大学 2013年 第3問
曲線$C:y=x^3$上の点$\mathrm{P}(t,\ t^3)$における接線を$\ell$とする.$\ell$の$\mathrm{P}$とは異なる$C$との交点を$\mathrm{Q}$とし,$C$と$\ell$とで囲まれた部分を$S$とする.このとき,次の問いに答えよ.ただし,$t>0$とする.

(1)接線$\ell$の方程式と,点$\mathrm{Q}$の座標を求めよ.
(2)原点$\mathrm{O}$と$2$点$\mathrm{P}$,$\mathrm{Q}$の中点を通る直線を$m$とする.$m$の方程式を求めよ.
(3)$(2)$の直線$m$により$S$は$2$つの部分に分けられる.$x$軸で$x>0$の一部を含む部分の面積を$s_1$とし,もう一方の面積を$s_2$とする.このとき$\displaystyle \frac{s_1}{s_2}$を求めよ.
津田塾大学 私立 津田塾大学 2013年 第3問
曲線$y=-x^2+1$を$C_1$とし,曲線$y=2 |x(1-x)|$を$C_2$とする.

(1)$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
津田塾大学 私立 津田塾大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面上の直線$y=x+1$を$\ell$とする.$\ell$に関して点$\mathrm{P}(s,\ t)$と対称な点を$\mathrm{Q}$とする.

(1)点$\mathrm{Q}$の座標を$s,\ t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}} \leqq 1$をみたすような点$\mathrm{P}$の存在範囲を図示せよ.
愛知工業大学 私立 愛知工業大学 2013年 第3問
$xy$平面において,曲線$y=-x^2-2x+6$を$C_1$,曲線$y=3 |x|$を$C_2$とする.

(1)$C_1$と$C_2$の交点の$x$座標を求めよ.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
東北工業大学 私立 東北工業大学 2013年 第1問
$2$次関数$y=ax^2+bx+12 (a \neq 0)$のグラフがある.この関数のグラフの軸は,直線$x=-2$であるとする.

(1)この関数のグラフが点$(2,\ 0)$を通るならば,頂点の$y$座標は$[][]$である.
(2)定義域$-3 \leqq x \leqq 2$に対する値域が$-4 \leqq y \leqq 60$ならば,$a=[][]$,$b=[][]$である.
(3)このグラフを$y$軸方向に$-4$だけ平行移動させたとき$x$軸と接するならば,$a=[][]$,$b=[][]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第4問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$とする.時刻$t$における座標平面上の点$\mathrm{P}(x,\ y)$の位置が$x=\sin t$,$y=\sin 2t$で与えられている.

(1)原点$\mathrm{O}(0,\ 0)$から点$\mathrm{P}$が最も遠方にあるとき,$2$点$\mathrm{O}$,$\mathrm{P}$間の距離は$[ ]$であり,そのときの点$\mathrm{P}$の速度$\overrightarrow{v}$は$\overrightarrow{v}=[ ]$である.
(2)点$\mathrm{P}$の軌跡を$y=f(x)$と表すと,$f(x)=[ ]$である.ただし$x$の範囲は$[ ]$である.
(3)$(2)$で求めた軌跡と$x$軸とで囲まれてできる図形の面積は$[ ]$である.
東京都市大学 私立 東京都市大学 2013年 第1問
次の問に答えよ.

(1)$\left( \begin{array}{cc}
1+a & 1 \\
4 & 3+3a
\end{array} \right)$が逆行列をもたないような$a$の値をすべて求めよ.
(2)$xy$平面上の曲線$y=\sqrt{x-1}+1$と直線$y=x-6$の交点の座標を求めよ.
(3)媒介変数表示
\[ \left\{ \begin{array}{l}
x=4 \cos^2 \theta \\
y=4 \cos \theta \sin \theta
\end{array} \right. \]
の表す円の方程式,および中心の座標と半径を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。