タグ「座標」の検索結果

114ページ目:全2097問中1131問~1140問を表示)
龍谷大学 私立 龍谷大学 2013年 第2問
座標平面上の点$(0,\ 1)$を通り$x$軸に平行な直線$\ell$と,点$\mathrm{A}(0,\ 4)$を考える.平面上の動点$\mathrm{P}(x,\ y)$が

$\mathrm{AP}:$(点$\mathrm{P}$と直線$\ell$の距離)$=2:1$

を満たすとき,点$\mathrm{P}$の軌跡を求め,図示しなさい.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第1問
次の$[ ]$にあてはまる適切な数値を記入せよ.

(1)数直線上を動く点$\mathrm{P}$が原点の位置にある.$2$個のさいころを同時に投げる試行を$\mathrm{T}$とし,試行$\mathrm{T}$の結果によって,$\mathrm{P}$は次の規則で動く.
(規則)$2$個のさいころの出た目の積が偶数ならば$+2$だけ移動し,奇数ならば$+1$だけ移動する.
試行$\mathrm{T}$を$n$回繰り返し行ったときの$\mathrm{P}$の座標を$x_n$とすると,$x_1=2$となる確率は$[ア]$であり,$x_3=3$かつ$x_4=5$となる確率は$[イ]$である.また,$\mathrm{P}$が座標$4$以上の点に初めて到達するまで試行$\mathrm{T}$を繰り返し行うとき,試行回数の期待値は$[ウ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=|2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=1$をみたしている.このとき,$|\overrightarrow{\mathrm{OB}}|=[エ]$である.また,実数$s,\ t$が条件$1 \leqq s+3t \leqq 3$,$s \geqq 0$,$t \geqq 0$をみたしながら動くとき,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$で定められた点$\mathrm{P}$の存在する範囲の面積は$[オ]$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第2問
$xy$平面上に$2$曲線
\[ C_1:y=2x \sqrt{1-x^2},\quad C_2:y=\sqrt{1-x^2} \]
がある.$C_1$,$C_2$上に$2$点$\mathrm{P}_1(t,\ 2t \sqrt{1-t^2})$,$\mathrm{P}_2 (t,\ \sqrt{1-t^2}) (-1<t<1)$をとり,$\mathrm{P}_1$における$C_1$の接線$\ell_t$と,$\mathrm{P}_2$における$C_2$の接線$m_t$について考える.このとき,次の問いに答えよ.

(1)$C_1$および$C_2$の概形を同じ$xy$平面上に描け.ただし,曲線の凹凸と変曲点は調べなくてよい.また,$\mathrm{P}_1$と$\mathrm{P}_2$が一致するときの$t$の値を求めよ.
(2)$2$直線$\ell_t$と$m_t$が平行になるときの$t$がみたすべき条件を,$t$についての$2$次方程式で表し,その解$\alpha,\ \beta (\alpha<\beta)$を求めよ.
(3)$\ell_t$と$m_t$が交点をもつとき,その交点の$y$座標を$y_t$とする.

(i) $y_t$を$t$を用いて表せ.
(ii) $y_t>0$となる$t$の値の範囲を$(2)$で求めた$\alpha,\ \beta$を用いて表し,この範囲における$y_t$の最小値を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第3問
座標平面において次の$2$つの$2$次曲線を考える.

(1)原点$\mathrm{O}$と直線$x=-2$からの距離が等しい点の軌跡の方程式は
\[ y^2=[ア](x+[イ]) \]
である.
(2)$2$直線$\displaystyle y=\frac{3}{4}x-\frac{9}{4}$,$\displaystyle y=-\frac{3}{4}x+\frac{9}{4}$を漸近線にもち,$2$つの焦点の座標が$(-2,\ 0)$,$(8,\ 0)$である双曲線の方程式は
\[ \frac{(x-[ウ])^2}{[エ][オ]}-\frac{y^2}{[カ]}=1 \]
である.
(3)$(1)$と$(2)$の$2$つの曲線の共有点は$[キ]$個ある.
広島修道大学 私立 広島修道大学 2013年 第2問
$a,\ b,\ c$を定数とし,$-1<a<0$とする.$2$次関数$f(x)=ax^2+bx+c$のグラフが点$(2,\ -4)$と点$(0,\ 2)$を通るとする.さらに,この$2$次関数$y=f(x)$のグラフの頂点の$y$座標が$4$であるとする.このとき,次の問に答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)$f(x) \geqq -3$となる$x$の値の範囲を求めよ.
広島修道大学 私立 広島修道大学 2013年 第3問
関数$f(x)=(x-7) |x-1|$について,次の問に答えよ.

(1)$a$を実数とするとき,方程式$f(x)=a$の異なる実数解の個数を調べよ.
(2)曲線$y=f(x)$と直線$y=x-7$の交点の座標を求めよ.
(3)曲線$y=f(x) (0 \leqq x \leqq 3)$と$2$直線$y=x-7$,$x=3$で囲まれた$2$つの部分の面積の和$S$を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第6問
座標平面において,媒介変数$t$の範囲が$0 \leqq t \leqq \pi$であるサイクロイド
\[ x=t-\sin t,\quad y=1-\cos t \]
を$C$とする.

(1)曲線$C$上で$y$座標が最大になる点を$\mathrm{A}$とすると,$\mathrm{A}$の座標は$([ア],\ [イ])$である.
(2)直線$y=x+k$がこの曲線$C$の$0<t \leqq \pi$の部分に接するのは$\displaystyle t=\frac{\pi}{[ウ]}$のときであり,その接点の座標は$\displaystyle \left( \frac{\pi}{[エ]}-[オ],\ [カ] \right)$である.このとき,$\displaystyle k=[キ]-\frac{\pi}{[ク]}$である.
(3)曲線$C$と$x$軸,および点$\mathrm{A}$を通り$y$軸に平行な直線$\ell$で囲まれた図形の面積は$\displaystyle \frac{[ケ]}{[コ]} \pi$である.
(4)$(2)$の接線,$x$軸および直線$\ell$とで囲まれた図形から$(3)$の図形を除いた部分の面積は$\displaystyle \frac{\pi^2}{[サ]}-\frac{\pi}{[シ]}+[ス]$である.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$2x^2+3x-4=0$の解は$[$1$]$である.
(2)$a,\ b$を定数とし,$a>0$とする.$1$次関数$y=ax+b (-1 \leqq x \leqq 5)$の値域が$-2 \leqq y \leqq 2$であるとき,$a,\ b$の値は$a=[$2$]$,$b=[$3$]$である.
(3)放物線$y=x^2+x+2$と直線$y=ax-a$が共有点をもたないような定数$a$の値の範囲は$[$4$]$である.
(4)多項式$P(x)=x^3+ax^2+2x+5a$を$x-3$で割った余りが$5$であるとき,定数$a$の値は$[$5$]$であり,商は$[$6$]$である.
(5)半径$r$の円$x^2+y^2=r^2$と直線$4x+3y-5=0$が接するとき,$r=[$7$]$である.また,接点の座標は$[$8$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=1$,$\mathrm{BC}=\sqrt{3}$,$\mathrm{CA}=\sqrt{5}$のとき,$\cos A$の値は$[$9$]$,$\triangle \mathrm{ABC}$の面積は$[$10$]$である.また,$\triangle \mathrm{ABC}$の外接円の半径は$[$11$]$である.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$x=\sqrt{7}+3$,$y=\sqrt{7}-3$のとき,$xy=[$1$]$,$x^2+y^2=[$2$]$,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$3$]$である.
(2)$(x+9)^2-(x+9)-12$を因数分解すると$[$4$]$となる.
(3)連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
2x-3 \leqq 4x+6 \\
\displaystyle 3x+2 \leqq \frac{5x+3}{2}
\end{array} \right. \]
\setstretch{1.3}
の解は$[$5$]$である.
(4)方程式$2x^2-kx+3=0$が実数解をもたないような定数$k$の値の範囲は$[$6$]$である.
(5)$a,\ b$を定数とし,$a>0$,$b>0$とする.関数$y=ax^2$のグラフに,$y$軸上の点$(0,\ -b)$から接線を引く.$2$つの接線のうち,傾きが正であるものを$\ell$とし,接線$\ell$と放物線$y=ax^2$の接点を点$\mathrm{P}$とする.このとき,接線$\ell$の方程式と点$\mathrm{P}$の座標を$a$と$b$を用いて表すと,$\ell$の方程式は$[$7$]$,$\mathrm{P}$の座標は$[$8$]$となる.
(6)$2$次関数$y=f(x)$のグラフ$C$は,点$(0,\ 5)$を通り,$C$上の点$(-1,\ f(-1))$における接線は,$y=-11x+3$である.このとき,$f(x)=[$9$]$である.また,放物線$C$の$x \leqq 2$の部分と$x$軸および直線$x=2$で囲まれた部分の面積は$[$10$]$である.
(7)方程式$\displaystyle 5^{2x-3}-25^{x-1}+125^{\frac{2x}{3}}=121$の解は$[$11$]$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第3問
$2$点$\mathrm{A}(2,\ 6)$,$\mathrm{B}(6,\ 2)$を結ぶ直線$\mathrm{AB}$の中点$\mathrm{P}$と原点$\mathrm{O}$を通る直線$\mathrm{OP}$がある.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,直線$\mathrm{OP}$の傾きは$[ウ]$である.
(2)$x$の$2$次関数のグラフで定める$2$つの放物線$C_1$と$C_2$が,点$\mathrm{P}$で共通接線$\mathrm{OP}$をもち,さらに$C_1$は点$\mathrm{A}$,$C_2$は点$\mathrm{B}$を通るとすると

$C_1$は$y=x^2+[エオ]x+[カキ]$
$C_2$は$y=[ク]x^2+[ケ]x+[コサシ]$

となる.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。