タグ「座標」の検索結果

109ページ目:全2097問中1081問~1090問を表示)
東京海洋大学 国立 東京海洋大学 2013年 第5問
座標空間における$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(1,\ \sqrt{2},\ 1)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ \frac{\sqrt{6}}{6},\ \frac{\sqrt{3}}{6} \right)$,$\mathrm{R}(0,\ -1,\ \sqrt{2})$について次の問に答えよ.

(1)$\angle \mathrm{AOC}$,$\angle \mathrm{BOC}$,$\angle \mathrm{AOR}$,$\angle \mathrm{BOR}$を求めよ.
(2)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一平面上にあることを示せ.
(3)$2$点$\mathrm{P}$,$\mathrm{Q}$は正の実数$s,\ t$について$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=t \overrightarrow{\mathrm{OB}}$をみたすものとする.$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{Q}$が$1$直線上にあるとき,四面体$\mathrm{OPQR}$の体積の最小値とそのときの$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
島根大学 国立 島根大学 2013年 第4問
空間における$3$点$\mathrm{A}(1,\ 1,\ -1)$,$\mathrm{B}(3,\ 2,\ 1)$,$\mathrm{C}(-1,\ 3,\ 0)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$は直角二等辺三角形であることを示せ.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,その交点を$\mathrm{H}$とするとき,点$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に外接する球の中心の座標を求めよ.
島根大学 国立 島根大学 2013年 第2問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
和歌山大学 国立 和歌山大学 2013年 第4問
曲線$C:y=xe^{-x^2}$上の点$(t,\ te^{-t^2})$における接線を$\ell$とする.$t>1$の範囲で$\ell$と$x$軸の交点の$x$座標を最小にするような$t$を$t_0$とし,そのときの$\ell$を$\ell_0$とする.このとき,次の問いに答えよ.

(1)$t_0$を求めよ.
(2)$0<x<t_0$の範囲で$C$は上に凸であることを示せ.
(3)$C$と$\ell_0$と$y$軸で囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
鳥取大学 国立 鳥取大学 2013年 第4問
実数$t$の関数$\alpha(t),\ \beta(t)$を$\displaystyle \alpha(t)=\frac{e^t+e^{-t}}{2}$,$\displaystyle \beta(t)=\frac{e^t-e^{-t}}{2}$で定める.実数の定数$p$に対して点$\mathrm{P}(x,\ y)$の$x$座標および$y$座標を,複素数
\[ z=\frac{ip \alpha(t)+\beta(t)}{ip \beta(t)+\alpha(t)} \]
の実部および虚部でそれぞれ与える.ただし$i$は虚数単位とする.

(1)$\{\alpha(t)\}^2-\{\beta(t)\}^2=1$となることを示し,$x,\ y$を$t$の関数として表せ.
(2)点$\mathrm{P}$の$x$座標の$t \to \infty$および$t \to -\infty$のときの極限値をそれぞれ求めよ.
(3)$p \neq 0$のとき,点$\mathrm{P}$の描く曲線を$x$と$y$の関係式で表せ.
香川大学 国立 香川大学 2013年 第1問
次の問に答えよ.

(1)座標平面上の原点$\mathrm{O}$を通り,$x$軸とのなす角が$30^\circ$で傾きが正の直線と,放物線$y=x^2$の交点で$\mathrm{O}$と異なるものを$\mathrm{A}$とおく.点$\mathrm{A}$の座標を求めよ.
(2)線分$\mathrm{OA}$を$1$辺とする正方形$\mathrm{OABC}$をつくる.ただし,点$\mathrm{C}$は第$2$象限にとる.点$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
(3)直線$\mathrm{OB}$に垂直で,放物線$y=x^2$に接する直線の方程式を求めよ.
香川大学 国立 香川大学 2013年 第1問
次の問に答えよ.

(1)座標平面上の原点$\mathrm{O}$を通り,$x$軸とのなす角が$30^\circ$で傾きが正の直線と,放物線$y=x^2$の交点で$\mathrm{O}$と異なるものを$\mathrm{A}$とおく.点$\mathrm{A}$の座標を求めよ.
(2)線分$\mathrm{OA}$を$1$辺とする正方形$\mathrm{OABC}$をつくる.ただし,点$\mathrm{C}$は第$2$象限にとる.点$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
(3)直線$\mathrm{OB}$に垂直で,放物線$y=x^2$に接する直線の方程式を求めよ.
香川大学 国立 香川大学 2013年 第4問
$a>0$のとき,$2$つの放物線$y=x^2-2,\ y=-ax^2+ax-1$について,次の問に答えよ.

(1)$2$つの放物線の交点の座標を求めよ.
(2)$2$つの放物線で囲まれた図形の面積を求めよ.
東北学院大学 私立 東北学院大学 2013年 第3問
関数$y=-x^3+x$について以下の問いに答えよ.

(1)極値を求めグラフの概形を描け.
(2)グラフ上の点$\mathrm{P}(t,\ -t^3+t) (t>0)$における接線とグラフとの交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の接線が点$(0,\ 2)$を通るとき線分$\mathrm{PQ}$の長さを求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。