タグ「座標」の検索結果

108ページ目:全2097問中1071問~1080問を表示)
宮崎大学 国立 宮崎大学 2013年 第2問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
愛媛大学 国立 愛媛大学 2013年 第4問
原点を$\mathrm{O}$とする座標空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,次の条件$①,\ ②,\ ③,\ ④$を満たすとする.

$①$ $\mathrm{A}$は$xy$平面上の点で$\mathrm{OA}=1$
$②$ $\mathrm{B}$,$\mathrm{C}$は$yz$平面上の点で,$y$軸に関して対称である
$③$ $\triangle \mathrm{OAB}$は正三角形である
$④$ $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は$y$軸上にない


(1)$\mathrm{B}$の$y$座標を$t$とするとき,$t$がとり得る値の範囲を求めよ.
(2)四面体$\mathrm{OABC}$の表面積の最大値を求めよ.
(3)表面積が最大となる四面体$\mathrm{OABC}$を$x$軸,$y$軸,$z$軸の周りに回転してできる立体の体積をそれぞれ$V_x$,$V_y$,$V_z$とするとき,$V_x$,$V_y$,$V_z$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$-1<x<1$で定義される関数$f(x)=2x+\sqrt{5-5x^2}$について,座標平面上の曲線$C:y=f(x)$を考える.このとき,次の各問に答えよ.

(1)曲線$C$は上に凸であることを示し,$f(x)$の最大値を求めよ.
(2)曲線$C$上の点のうち,原点$\mathrm{O}$との距離が最大となる点を$\mathrm{A}$,最小となる点を$\mathrm{B}$とするとき,$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めよ.
(3)(2)で求めた点$\mathrm{A}$,$\mathrm{B}$について,線分$\mathrm{OA}$,線分$\mathrm{OB}$,および曲線$C$で囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
最初,数直線上の原点に点$\mathrm{P}$を置き,コインを$1$回投げるごとに以下のように点$\mathrm{P}$の位置を定める.

\mon[$①$] 点$\mathrm{P}$の座標が$-2$以上$3$以下のとき,コインの表が出れば正の向きに$1$だけ点$\mathrm{P}$を進め,裏が出れば負の向きに$1$だけ点$\mathrm{P}$を進める.
\mon[$②$] 点$\mathrm{P}$の座標が$-3$または$4$のとき,コインの表裏にかかわらず点$\mathrm{P}$を動かさない.

コインを投げて$①,\ ②$に従い点$\mathrm{P}$の位置を定める操作を$6$回行う.この$6$回の操作によって定めた点$\mathrm{P}$の最終的な位置の座標を$a$とする.ただし,コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする.このとき,次の各問に答えよ.

(1)$a=-3$となる確率と$a=4$となる確率をそれぞれ求めよ.
(2)$a$の期待値を求めよ.
宮崎大学 国立 宮崎大学 2013年 第1問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第5問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t)$における接線を$\ell$とする.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸の交点,接線$\ell$と$y$軸の交点の座標をそれぞれ求めよ.
(3)曲線$C$,接線$\ell$,$y$軸および直線$x=1$で囲まれた図形の面積$S(t)$を求めよ.
(4)$0 \leqq t \leqq 1$とする.このとき,$S(t)$の最大値およびそのときの$t$の値,$S(t)$の最小値およびそのときの$t$の値をそれぞれ求めよ.
長崎大学 国立 長崎大学 2013年 第6問
次の問いに答えよ.

(1)関数$y=-x+2-\sqrt{1-x^2} (-1 \leqq x \leqq 1)$の増減およびグラフの凹凸を調べよ.また,$y$の最大値およびそのときの$x$の値,$y$の最小値およびそのときの$x$の値をそれぞれ求めよ.
(2)$2$つの曲線$y=-x+2-\sqrt{1-x^2} (-1 \leqq x \leqq 1)$と$y=-x+2+\sqrt{1-x^2} (-1 \leqq x \leqq 1)$によって囲まれた図形$D$を座標平面上に描け.なお,$D$の境界が座標軸との共有点をもつならば,その座標も記入せよ.
(3)上の図形$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
長崎大学 国立 長崎大学 2013年 第7問
半径$1$の円と長さ$2$の線分がある.この線分の一方の端点を,円の中心に合わせて円上に固定した図形を考える.線分の端点で,円の中心とは異なるものを$\mathrm{P}$とする.この図形を下の図$1$のように$xy$平面上に置く.すなわち,中心が点$(0,\ 1)$,$\mathrm{P}$が点$(0,\ -1)$と一致するように置く.次に,$x$軸上で正の方向に,すべらないように円を半回転させる.下の図$2$は円が$\theta$だけ回転したときの状態を表している.$0 \leqq \theta \leqq \pi$の範囲で,点$\mathrm{P}$が描く曲線$C$について考察する.次の問いに答えよ.
(図は省略)

(1)図$2$における点$\mathrm{P}$の$x$座標と$y$座標を,それぞれ$\theta$を用いて表せ.
(2)曲線$C$上にあって,$x$座標が最小となる点,最大となる点,$y$座標が最小となる点,最大となる点について,それぞれの座標を求めよ.
(3)曲線$C$と$2$直線$y=-1$および$x=\pi$によって囲まれた図形の面積$S$を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
座標平面上の曲線$K$を$y=x^3-x+1$とする.

(1)点$(t,\ t^3-t+1)$における$K$の接線の方程式を$t$を用いて表せ.
(2)点$(1,\ 5)$を通る直線$\ell$が$K$と接するとき,接点の座標を求めよ.
(3)直線$\ell$と$K$で囲まれた図形の面積を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
東京海洋大学 国立 東京海洋大学 2013年 第4問
座標平面上に$2$点$\mathrm{A}(t,\ t)$,$\mathrm{B}(t-1,\ -t+1)$をとり,線分$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$とする.

(1)$t$がすべての実数を動くとき,点$\mathrm{P}$の軌跡を求めよ.
(2)直線$\mathrm{AB}$の方程式を$t$を用いて表せ.
(3)$(2)$で求めた方程式を満たす実数$t$が存在するための$x,\ y$についての条件を求め,条件を満たす点$(x,\ y)$全体の領域$D$を座標平面内に図示せよ.
(4)$(1)$で求めた点$\mathrm{P}$の軌跡の方程式を$y=f(x)$とする.連立不等式
\[ y \geqq x,\quad y \geqq -x,\quad y \leqq 1,\quad y \geqq f(x) \]
の表す領域と領域$D$の共通部分の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。