タグ「座標」の検索結果

104ページ目:全2097問中1031問~1040問を表示)
島根大学 国立 島根大学 2013年 第3問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
奈良女子大学 国立 奈良女子大学 2013年 第2問
座標平面上に,直線$\displaystyle y=\frac{4}{3}x$と$y$軸の両方に接する円$C$がある.その円$C$の中心の座標を$(a,\ b)$とする.ただし,$a>0$かつ$b<0$とする.次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)点$(0,\ 3)$と点$(a,\ b)$を通る直線を$\ell$とし,$\ell$と$x$軸との交点の座標を$(t,\ 0)$とおく.このとき,$t$を$a$を用いて表せ.また,$a \to \infty$のときの$t$の極限値を求めよ.
奈良女子大学 国立 奈良女子大学 2013年 第6問
$t$を$0 \leqq t \leqq \sqrt{3}-1$をみたす実数とする.座標平面上に$6$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\mathrm{B}(\sqrt{3},\ 0)$,$\mathrm{P}(t-1,\ 0)$,$\mathrm{Q}(t,\ 1)$,$\mathrm{R}(t+1,\ 0)$がある.$2$直線$\mathrm{PQ}$と$\mathrm{AB}$の交点を$\mathrm{M}$,$2$直線$\mathrm{QR}$と$\mathrm{AB}$の交点を$\mathrm{N}$とする.次の問いに答えよ.

(1)$2$点$\mathrm{M}$,$\mathrm{N}$の$x$座標をそれぞれ求めよ.
(2)三角形$\mathrm{OAB}$と三角形$\mathrm{PQR}$の共通部分の面積を$S$とおく.$S$を$t$を用いて表せ.
(3)(2)で求めた$S$が最大となるような$t$の値を求めよ.
山形大学 国立 山形大学 2013年 第1問
次の問いに答えよ.

(1)$2$つの循環小数$a=1. \dot{2}$,$b=0. \dot{8} \dot{1}$に対して,$ab$の値を求めよ.
(2)$a$を定数とする.$xy$平面上の曲線$y=\log_2x$と直線$y=x+a$は$2$つの共有点をもつ.共有点の$x$座標$x_1,\ x_2$が$x_2=4x_1$を満たすように,$a$の値を定めよ.
(3)$xy$平面において,曲線$\displaystyle C:y=\frac{1}{x} \ (x>0)$と直線$\displaystyle y=-x+\frac{10}{3}$の$2$つの共有点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$C$上の点$\mathrm{P}$が$\mathrm{PA}=\mathrm{PB}$を満たすとき,$\triangle \mathrm{PAB}$の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面上の円$x^2+y^2-10x-10y+49=0$を$C$とする.原点$\mathrm{O}$を通り,円$C$に接する直線のうち,傾きの大きい方を$\ell$とする.

(1)$\ell$の傾きを求めよ.
(2)$x$軸に接し,円$C$と外接するような円の中心$\mathrm{P}$の描く軌跡を求めよ.
(3)直線$\ell$と$x$軸に接し,さらに円$C$と外接する円の半径をすべて求めよ.
山形大学 国立 山形大学 2013年 第1問
$2$つの放物線$C_1:y=-2x^2$,$C_2:y=-x^2+2x-35$を考える.このとき,次の問に答えよ.

(1)放物線$C_1$と放物線$C_2$の$2$つの交点の座標を求めよ.
(2)$a$を実数とする.点$(a,\ -a^2+2a-35)$における放物線$C_2$の接線の方程式を求めよ.
(3)放物線$C_1$と放物線$C_2$で囲まれた図形の面積を求めよ.
(4)$(1)$で求めた交点の$x$座標を$b,\ c \ (b<c)$とする.また,$b \leqq a \leqq c$とする.このとき,放物線$C_1$と放物線$C_2$および$(2)$で求めた接線で囲まれた図形の面積が$\displaystyle \frac{352}{3}$となるような$a$の値を求めよ.
山形大学 国立 山形大学 2013年 第2問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第1問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第4問
自然数$n$に対し,座標平面上の点$(n,\ 1)$を$\mathrm{P}_n$とする.また,$r$を正の実数とする.このとき,次の問に答えよ.

(1)$1$次変換$f$は,すべての$n$に対して$f(\mathrm{P}_n)=\mathrm{P}_{n+1}$を満たすとする.$f$を表す行列$A$を求めよ.
(2)$1$次変換$g$は,点$(1,\ 1)$を点$(-2r,\ 1)$に,点$(-2r,\ 1)$を点$(2r^2-r,\ 1)$に移すとする.$g$を表す行列$B$を求めよ.
(3)$C=ABA^{-1}$とする.行列$C^n$を推定し,それが正しいことを数学的帰納法によって示せ.
(4)行列$C^n$で表される$1$次変換による点$(1,\ r)$の像の$x$座標を$x_n$とする.$r<1$のとき,$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。