タグ「座標」の検索結果

100ページ目:全2097問中991問~1000問を表示)
愛知教育大学 国立 愛知教育大学 2013年 第6問
座標平面上の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ 0)$に対し,点$\mathrm{A}$を通る傾き$m \ (m>0)$の直線と円$C$との交点で,点$\mathrm{A}$とは異なる点を$\mathrm{P}$とする.また,点$\mathrm{P}$から$x$軸に下した垂線を$\mathrm{PQ}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$m$を用いて表せ.
(2)$\triangle \mathrm{APQ}$の面積を最大とする$m$の値を求めよ.
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
岩手大学 国立 岩手大学 2013年 第6問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^3,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=4$のとき,$C_1$,$C_2$および$x$軸で囲まれた図形の面積を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^2,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=2e$のとき,$C_1$,$C_2$および$x$軸で囲まれた部分を$D$とする.$D$の面積$S$を求めよ.ただし,$e$は自然対数の底とする.
(4)(3)の$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第8問
$\mathrm{O}$を原点とする座標平面上を動く点$\mathrm{P}$の時刻$t$における座標$\mathrm{P}(x(t),\ y(t))$が
\[ \left\{ \begin{array}{l}
x(t)=e^t \cos t \\
y(t)=e^t \sin t
\end{array} \right. \]
で与えられている.

(1)時刻$t$における点$\mathrm{P}$の速度ベクトル$\overrightarrow{v_1}(t)=(x^\prime(t),\ y^\prime(t))$は,ある$2 \times 2$行列$A$によって
\[ \left( \begin{array}{c}
x^\prime(t) \\
y^\prime(t)
\end{array} \right)=A \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right) \]
と表すことができる.この行列$A$を求めよ.
(2)$\mathrm{P}$の各座標の時刻$t$による$n$次導関数を成分とするベクトルを$\overrightarrow{v_n}(t)=(x^{(n)}(t),\ y^{(n)}(t))$とおく.このとき,$n \geqq 1$に対し,
\[ \left( \begin{array}{c}
x^{(n)}(t) \\
y^{(n)}(t)
\end{array} \right)=A^n \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right) \]
となることを,数学的帰納法を用いて示せ.
(3)$\overrightarrow{v_{2013}}(\pi)$を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$x>0$のとき,$\displaystyle e^{2x}>\frac{x^2}{2}$となることを示せ.
(2)$A=\left( \begin{array}{cc}
0 & p \\
1 & 0
\end{array} \right)$($p$は実数)について,$A^4=E$かつ$A^2 \neq E$のとき,$p$の値を求めよ.ただし,$E$は単位行列とする.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
(4)$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 2 \sqrt{3})$,$\mathrm{B}(1,\ 0)$をとる.点$\mathrm{A}$を通り,直線$\mathrm{OA}$に直交する直線上に$\mathrm{OA}=\mathrm{AC}$となる点$\mathrm{C}$をとる.$\angle \mathrm{COB}=\theta$とするとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
岩手大学 国立 岩手大学 2013年 第3問
座標空間内で$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(0,\ 4,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を頂点とする四面体$\mathrm{OABC}$を考える.辺$\mathrm{AB}$上の点を$\mathrm{D}$,辺$\mathrm{AC}$上の点を$\mathrm{E}$,線分$\mathrm{DE}$上の点を$\mathrm{P}$とする.線分$\mathrm{DE}$は辺$\mathrm{BC}$に平行とする.$\overrightarrow{\mathrm{AD}}=\alpha \overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{DP}}=\beta \overrightarrow{\mathrm{DE}}$とするとき,次の問いに答えよ.ただし,$\alpha,\ \beta$は実数とし,$0<\alpha<1$,$0<\beta<1$とする.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$,$\alpha$,$\beta$によって表し,次に$\overrightarrow{\mathrm{OP}}$を成分表示せよ.
(2)$\overrightarrow{\mathrm{OP}}$が$\overrightarrow{\mathrm{DE}}$に垂直となる$\mathrm{P}$の座標を$\alpha$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$が$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{AP}}$の両方に垂直となる$\alpha$の値を求めよ.
(4)点$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の交点を$\mathrm{H}$とする.$\mathrm{H}$の座標を求めよ.
岩手大学 国立 岩手大学 2013年 第3問
以下の問いに答えよ.

(1)不等式$\log_2x>1$を解け.
(2)不等式$\log_{\frac{1}{2}}x>1$を解け.
(3)座標平面上に,
\[ \log_2 (x+y)+\log_{\frac{1}{2}}(x-y) \]
が定義される領域を図示せよ.
(4)座標平面上に,不等式
\[ \log_2 (x+y)+\log_{\frac{1}{2}}(x-y)>1 \]
の表す領域を図示せよ.
秋田大学 国立 秋田大学 2013年 第1問
円$x^2+y^2=1$を$C_1$とし,点$\mathrm{P}(0,\ -1)$を通り,傾きが$m$の直線を$\ell$とする.ただし,$m>1$である.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.さらに,点$\mathrm{Q}$における円$C_1$の接線の方程式を求めよ.
(2)原点$\mathrm{O}$と点$\mathrm{P}$および(1)の点$\mathrm{Q}$の$3$点を通る円を$C_2$とする.$C_2$の方程式を求めよ.
(3)$m=\sqrt{3}$のとき,円$C_1$と(2)の円$C_2$の両方に接する直線の方程式を求めよ.
秋田大学 国立 秋田大学 2013年 第2問
$k$を整数とし,$0 \leqq x \leqq \pi$において,
\[ f(x)=e^x \sin \left\{ (4k+1)x \right\},\quad g(x)=e^x \sin x \]
とする.このとき,次の問いに答えよ.

(1)$k=2$のとき,$2$つの曲線$y=f(x)$,$y=g(x)$の共有点の$x$座標を求めよ.
(2)$k=-1$のとき,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた図形の面積を求めよ.
(3)任意の整数$k$に対して,$2$つの曲線$y=f(x),\ y=g(x)$の共有点のうちに,その点におけるそれぞれの曲線の接線が一致するものがあることを示せ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。