タグ「座標空間」の検索結果

4ページ目:全180問中31問~40問を表示)
広島大学 国立 広島大学 2015年 第3問
座標空間内に$5$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A} \left(0,\ 0,\ \frac{3}{4} \right),\quad \mathrm{B}\left( \frac{1}{2},\ 0,\ \frac{1}{2} \right),\quad \mathrm{C}(s,\ t,\ 0),\quad \mathrm{D}(0,\ u,\ 0) \]
がある.ただし,$s,\ t,\ u$は実数で,$s>0$,$t>0$,$s+t=1$を満たすとする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面が$y$軸と点$\mathrm{D}$で交わっているとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$x$軸との交点の$x$座標を求めよ.
(2)$u$を$t$を用いて表せ.また,$0<u<1$であることを示せ.
(3)点$(0,\ 1,\ 0)$を$\mathrm{E}$とする.点$\mathrm{D}$が線分$\mathrm{OE}$を$12:1$に内分するとき,$t$の値を求めよ.
岡山大学 国立 岡山大学 2015年 第4問
座標空間内の$8$点
\[ (0,\ 0,\ 0),\ (1,\ 0,\ 0),\ (1,\ 1,\ 0),\ (0,\ 1,\ 0),\ (0,\ 0,\ 1),\ (1,\ 0,\ 1),\ (1,\ 1,\ 1),\ (0,\ 1,\ 1) \]
を頂点とする立方体を考える.$0<t<3$のとき,$3$点$(t,\ 0,\ 0)$,$(0,\ t,\ 0)$,$(0,\ 0,\ t)$を通る平面でこの立方体を切った切り口の面積を$f(t)$とし,$f(0)=f(3)=0$とする.関数$f(t)$について,次の問いに答えよ.

(1)$0 \leqq t \leqq 3$のとき,$f(t)$を$t$の式で表せ.
(2)関数$f(t)$の$0 \leqq t \leqq 3$における最大値を求めよ.
(3)定積分$\displaystyle \int_0^3 f(t) \, dt$の値を求めよ.
九州大学 国立 九州大学 2015年 第3問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球がある.下の概略図のように,$y$軸の負の方向から仰角$\displaystyle \frac{\pi}{6}$で太陽光線が当たっている.この太陽光線はベクトル$(0,\ \sqrt{3},\ -1)$に平行である.球は光を通さないものとするとき,以下の問いに答えよ.
(図は省略)

(1)球の$z \geqq 0$の部分が$xy$平面上につくる影を考える.$k$を$-1<k<1$を満たす実数とするとき,$xy$平面上の直線$x=k$において,球の外で光が当たらない部分の$y$座標の範囲を$k$を用いて表せ.
(2)$xy$平面上において,球の外で光が当たらない部分の面積を求めよ.
(3)$z \geqq 0$において,球の外で光が当たらない部分の体積を求めよ.
岡山大学 国立 岡山大学 2015年 第2問
座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$をとり,$2$つのベクトル$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{CP}}$の内積が$0$になるような点$\mathrm{P}(x,\ y,\ z)$の集合を$S$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)集合$S$は球面であることを示し,その中心$\mathrm{Q}$の座標と半径$r$の値を求めよ.
(2)原点$\mathrm{O}$から最も遠い距離にある$S$上の点の座標を求めよ.
(3)$(1)$で求めた点$\mathrm{Q}$は,平面$\alpha$上にあることを示せ.
(4)$(1)$で求めた点$\mathrm{Q}$を通って平面$\alpha$に垂直な直線を$\ell$とする.球面$S$と直線$\ell$のすべての共有点について,その座標を求めよ.
熊本大学 国立 熊本大学 2015年 第2問
座標空間内の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(3,\ 0,\ 1)$,$\mathrm{C}(1,\ 2,\ 0)$を含む平面を$H$とする.以下の問いに答えよ.

(1)点$\mathrm{P}(-3,\ 2,\ 2)$は$H$上の点であることを示せ.
(2)点$\mathrm{Q}(1,\ -3,\ -4)$を通る直線が$H$と直交するとき,その交点の座標を求めよ.
鳥取大学 国立 鳥取大学 2015年 第2問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
鳥取大学 国立 鳥取大学 2015年 第3問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
鳥取大学 国立 鳥取大学 2015年 第2問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
佐賀大学 国立 佐賀大学 2015年 第2問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
佐賀大学 国立 佐賀大学 2015年 第3問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
スポンサーリンク

「座標空間」とは・・・

 まだこのタグの説明は執筆されていません。