タグ「座標空間」の検索結果

17ページ目:全180問中161問~170問を表示)
兵庫県立大学 公立 兵庫県立大学 2011年 第1問
座標空間内に3点A$(1,\ 0,\ 0)$,B$(0,\ \sqrt{2},\ 0)$,C$(0,\ 0,\ 1)$がある.

(1)$\cos \angle \text{ACB}$の値を求めよ.
(2)原点O$(0,\ 0,\ 0)$から三角形ABCに下ろした垂線の足をHとするとき,$\cos \angle \text{COH}$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2011年 第4問
座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 0,\ 1)$,$\mathrm{B}(0,\ 2,\ 1)$,$\mathrm{C}(3,\ 3,\ -3)$がある.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面$\alpha$上の点$\mathrm{P}$に対して,ベクトル$\overrightarrow{\mathrm{OP}}$は適当な$2$つの実数$s,\ t$を用いて,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$と表すことができる.以下の問に答えなさい.

(1)平面$\alpha$上にない点$\mathrm{Q}(a,\ b,\ c)$に対して,線分$\mathrm{QH}$が平面$\alpha$と垂直になるような$\alpha$上の点$\mathrm{H}$の座標を$a,\ b,\ c$を用いて表しなさい.
(2)四面体$\mathrm{OABD}$の体積が四面体$\mathrm{OABC}$の体積と等しくなるように$z$軸上の点$\mathrm{D}$の座標を求めなさい.
横浜市立大学 公立 横浜市立大学 2011年 第3問
平面上の点$\mathrm{A}$を中心とする半径$a$の円から,中心角が${60}^\circ$で$\mathrm{AP}=\mathrm{AQ}=a$となる扇形$\mathrm{APQ}$を切り取る.つぎに線分$\mathrm{AP}$と$\mathrm{AQ}$を貼り合わせて,$\mathrm{A}$を頂点とする直円錐$K$を作り,これを点$\mathrm{O}$を原点とする座標空間におく.

$\mathrm{A}$,$\mathrm{P}$はそれぞれ$z$軸,$x$軸上の正の位置にとり,扇形$\mathrm{APQ}$の弧$\mathrm{PQ}$は$xy$平面上の$\mathrm{O}$を中心とする円$S$になるようにする.
また弦$\mathrm{PQ}$から定まる$K$の側面上の曲線を$C$とする.
(図は省略)
以下の問いに答えよ.

(1)$S$の半径を$b$とする.$S$上の点$\mathrm{R}(b \cos \theta,\ b \sin \theta,\ 0) (0 \leqq \theta \leqq 2\pi)$に対し,$K$上の母線$\mathrm{AR}$と$C$の交点を$\mathrm{M}$とする.$b$と線分$\mathrm{AM}$の長さを$a$と$\theta$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OM}}$を$xy$平面に正射影したベクトルの長さを$r$とする.$r$を$a$と$\theta$を用いて表し,定積分
\[ \int_0^{2\pi} \frac{1}{2} \{r(\theta)\}^2 \, d\theta \]
を求めよ.ただし,ベクトル$\overrightarrow{\mathrm{OE}}=(a_1,\ a_2,\ a_3)$を$xy$平面に{\bf 正射影したベクトル}とは$\overrightarrow{\mathrm{OE}^\prime}=(a_1,\ a_2,\ 0)$のことである.
京都大学 国立 京都大学 2010年 第6問
座標空間内で,O$(0,\ 0,\ 0)$,A$(1,\ 1,\ 0)$,B$(1,\ 1,\ 0)$,C$(0,\ 1,\ 0)$,D$(0,\ 0,\ 1)$,E$(1,\ 0,\ 1)$,F$(1,\ 1,\ 1)$,G$(0,\ 0,\ 1)$を頂点にもつ立方体を考える.この立方体を対角線OFを軸にして回転させて得られる回転体の体積を求めよ.
京都大学 国立 京都大学 2010年 第5問
座標空間内で,$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0 )$,$\mathrm{B}(1,\ 1,\ 0)$,$\mathrm{C}(0,\ 1,\ 0)$,$\mathrm{D}(0,\ 0,\ 1)$,$\mathrm{E}(1,\ 0,\ 1)$,$\mathrm{F}(1,\ 1,\ 1)$,$\mathrm{G}(0,\ 1,\ 1)$を頂点にもつ立方体を考える.

(1)頂点$\mathrm{A}$から対角線$\mathrm{OF}$に下ろした垂線の長さを求めよ.
(2)この立方体を対角線$\mathrm{OF}$を軸にして回転させて得られる回転体の体積を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
名古屋大学 国立 名古屋大学 2010年 第1問
座標空間に8点
\begin{eqnarray}
& & \text{O}(0,\ 0,\ 0),\ \text{P}(1,\ 0,\ 0),\ \text{Q}(1,\ 1,\ 0),\ \text{R}(0,\ 1,\ 0), \nonumber \\
& & \text{A}(0,\ 0,\ 1),\ \text{B}(1,\ 0,\ 1),\ \text{C}(1,\ 1,\ 1),\ \text{D}(0,\ 1,\ 1) \nonumber
\end{eqnarray}
をとり,線分BCの中点をMとする.線分RD上の点をN$(0,\ 1,\ t)$とし,3点 O,M,Nを通る平面と線分PDおよび線分PBとの交点をそれぞれK,Lとする.

(1)Kの座標を$t$で表せ.
(2)四面体OKLPの体積を$V(t)$とする.Nが線分RD上をRからDまで動くとき,$V(t)$の最大値と最小値およびそれらを与える$t$の値をそれぞれ求めよ.
静岡大学 国立 静岡大学 2010年 第3問
$xyz$座標空間に,下図のように一辺の長さ1の立方体OABC-DEFGがある.この立方体を$xy$平面上の直線$y = -x$のまわりに,頂点Fが$z$軸の正の部分にくるまで回転させる.このとき,次の問いに答えよ.

(1)回転後の頂点Bの座標を求めよ.
(2)回転後の頂点A,Gで定まるベクトル$\overrightarrow{\mathrm{AG}}$の成分を求めよ.

\setlength\unitlength{1truecm}

(図は省略)
東京医科歯科大学 国立 東京医科歯科大学 2010年 第2問
座標空間において,$8$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$,$\mathrm{D}(0,\ 1,\ 1)$,$\mathrm{E}(1,\ 0,\ 1)$,$\mathrm{F}(1,\ 1,\ 0)$,$\mathrm{G}(1,\ 1,\ 1)$をとり,この$8$点を頂点とする立方体を$Q$とする.また点$\mathrm{P}(x,\ y,\ z)$と正の実数$t$に対し,$6$点$(x+t,\ y,\ z)$,$(x-t,\ y,\ z)$,$(x,\ y+t,\ z)$,$(x,\ y-t,\ z)$,$(x,\ y,\ z+t)$,$(x,\ y,\ z-t)$を頂点とする正八面体を$\alpha_t(\mathrm{P})$,その外部の領域を$\beta_t(\mathrm{P})$で表す.ただし,立方体および正八面体は内部の領域も含むものとする.このとき以下の問いに答えよ.

(1)$0 < t \leqq 1$のとき,$Q$と$\alpha_t(\mathrm{O})$の共通部分$Q \cap \alpha_t(\mathrm{O})$の体積を$t$で表せ.
(2)$Q \cap \beta_1(\mathrm{O}) \cap \beta_1(\mathrm{D}) \cap \beta_1(\mathrm{E}) \cap \beta_1(\mathrm{F})$の体積を求めよ.
(3)$\displaystyle \frac{1}{2} < t \leqq 1$のとき,$Q \cap \alpha_t(\mathrm{O}) \cap \alpha_t(\mathrm{A})$の体積を$t$で表せ.
(4)$t$が$0<t \leqq 1$の範囲で変化するとき,$Q \cap \alpha_t(\mathrm{O}) \cap \beta_t(\mathrm{A}) \cap \beta_t(\mathrm{B}) \cap \beta_t(\mathrm{C})$の体積が最大となる$t$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第2問
座標空間において,8点O$(0,\ 0,\ 0)$,A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$,D$(0,\ 1,\ 1)$,E$(1,\ 0,\ 1)$,F$(1,\ 1,\ 0)$,G$(1,\ 1,\ 1)$をとり,この8点を頂点とする立方体を$Q$とする.また点P$(x,\ y,\ z)$と正の実数$t$に対し,6点$(x+t,\ y,\ z)$,$(x-t,\ y,\ z)$,$(x,\ y+t,\ z)$,$(x,\ y-t,\ z)$,$(x,\ y,\ z+t)$,$(x,\ y,\ z-t)$を頂点とする正八面体を$\alpha_t(\text{P})$,その外部の領域を$\beta_t(\text{P})$で表す.ただし,立方体および正八面体は内部の領域も含むものとする.このとき以下の問いに答えよ.

(1)$0 < t \leqq 1$のとき,$Q \cap \beta_t(\text{O}) \cap \beta_t(\text{D}) \cap \beta_t(\text{E}) \cap \beta_t(\text{F})$の体積,すなわち5個の領域$Q$,$\beta_t(\text{O})$,$\beta_t(\text{D})$,$\beta_t(\text{E})$,$\beta_t(\text{F})$の共通部分の体積を$t$で表せ.
(2)$Q \cap \alpha_1(\text{O}) \cap \beta_1(\text{A}) \cap \beta_1(\text{B}) \cap \beta_1(\text{C})$の体積を求めよ.
(3)$\displaystyle 0< t \leqq 1$のとき,
\[ Q \cap \beta_t(\text{O}) \cap \beta_t(\text{A}) \cap \beta_t(\text{B}) \cap \beta_t(\text{C}) \cap \beta_t(\text{D}) \cap \beta_t(\text{E}) \cap \beta_t(\text{F}) \cap \beta_t(\text{G}) \]
の体積を$t$で表せ.
スポンサーリンク

「座標空間」とは・・・

 まだこのタグの説明は執筆されていません。