タグ「座標空間」の検索結果

15ページ目:全180問中141問~150問を表示)
宮城大学 公立 宮城大学 2012年 第3問
次の空欄$[ハ]$から$[マ]$にあてはまる数や式を書きなさい.

$\mathrm{O}$を原点とする座標空間において,$3$点
\[ \mathrm{A} \left( \frac{1}{a},\ 0,\ 0 \right),\quad \mathrm{B} \left( 0,\ \frac{1}{b},\ 0 \right),\quad \mathrm{C} \left( 0,\ 0,\ \frac{1}{c} \right) \]
$(a,\ b,\ c>0)$をとる.平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{\mathrm{AB}}+u \overrightarrow{\mathrm{AC}}$($t,\ u$は定数)とおく.このとき,
\[ \overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{AB}}=[ハ],\quad \overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{AC}}=[ヒ] \]
となる.
したがって,$\mathrm{OH}$が平面$\mathrm{ABC}$に垂直であるとすると,$\mathrm{H}$の座標は
\[ \left( [フ],\ [ヘ],\ [ホ] \right) \]
となる.また,このとき$\overrightarrow{\mathrm{AH}} \cdot \overrightarrow{\mathrm{BC}}=[マ]$となる.
横浜市立大学 公立 横浜市立大学 2012年 第2問
座標空間に,一辺の長さが$a$の正四面体$\mathrm{ABCD}$がある.辺$\mathrm{AB}$,$\mathrm{CD}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を
\[ \mathrm{AP}=\mathrm{CQ}=ta (0<t<1) \]
となるようにとる.以下の問いに答えよ.
(図は省略)

(1)ベクトル$\overrightarrow{\mathrm{BA}}$と$\overrightarrow{\mathrm{BQ}}$の内積を求めよ.
(2)ベクトル$\overrightarrow{\mathrm{QA}}$と$\overrightarrow{\mathrm{QB}}$の内積を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{QP}}$の長さを求めよ.
岩手大学 国立 岩手大学 2011年 第2問
座標空間内で4点O$(0,\ 0,\ 0),\ \text{A}(1,\ 0,\ 0),\ \text{B}(0,\ 1,\ 0),\ \text{C}(0,\ 0,\ 1)$を頂点とする四面体OABCを考える.線分ABを$m:(1-m)$に内分する点をP,線分OPを$s:(1-s)$に内分する点をQ,線分CPを$u:(1-u)$に内分する点をRとする.また,線分ABの中点をHとし,点Rを通り線分OPに垂直に交わる直線と線分OPとの交点をIとする.$\angle \text{OQC}$と$\angle \text{IQR}$が等しいとき,次の問いに答えよ.

(1)点Rの座標を$m,\ u$を用いて表せ.
(2)$s$を$u$を用いて表せ.
(3)$\displaystyle \overrightarrow{\mathrm{HR}}=a\frac{\overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{AB}}|}+b \frac{\overrightarrow{\mathrm{HC}}}{|\overrightarrow{\mathrm{HC}}|}$と表すとき,この$a,\ b$を用いて$s,\ m$を表せ.
東京大学 国立 東京大学 2011年 第6問
次の問いに答えよ.

(1)$x,\ y$を実数とし,$x>0$とする.$t$を変数とする2次関数$f(t)=xt^2+yt$の$0 \leqq t \leqq 1$における最大値と最小値の差を求めよ.
(2)次の条件を満たす点$(x,\ y)$の全体からなる座標平面内の領域を$S$とする.\\
$x>0$かつ,実数$z$で$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して
\[ 0 \leqq xt^2+yt +z \leqq 1 \]
を満たすようなものが存在する.\\
$S$の概形を図示せよ.
(3)次の条件を満たす点$(x,\ y,\ z)$全体からなる座標空間内の領域を$V$とする.\\
$0 \leqq x \leqq 1$かつ,$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して,
\[ 0 \leqq xt^2+yt + z \leqq 1 \]
が成り立つ.\\
$V$の体積を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第5問
座標空間内で点Q$(a,\ b,\ c)$を中心とする半径$r$の球を$B$とし,$B$は各座標平面と交わる位置にあるとする.$B$が$xy$平面によって切り取られる立体のうち,Qを含む方を$B_1$,切断面を$D_1$とする.また$B$が$xz$平面によって切り取られる図形のうち,Qを含む方を$B_2$,切断面を$D_2$とする.$D_1$の面積が$8\pi$,$D_2$の面積が$12\pi$,$D_1$と$D_2$が交わってできる線分の長さが4のとき,以下の問いに答えよ.

(1)$D_1,\ D_2$のそれぞれの中心と半径を$a,\ b,\ c,\ r$を用いて表せ.
(2)$b,\ c,\ r$の値を求めよ.
(3)$B_1$と$B_2$の共通部分が$yz$平面によって切り取られた切断面を$D_3$とする.$a$を動かしたときの$D_3$の面積の最大値とそのときの点Qの座標Q$(a,\ b,\ c)$を求めよ.
山形大学 国立 山形大学 2011年 第1問
座標空間内に$2$点$\mathrm{A}(0,\ 2,\ 1)$,$\mathrm{B}(2,\ -1,\ 2)$があり,点$\mathrm{P}(x,\ y,\ 0)$は$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$を満たしながら動くものとする.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$を成分で表せ.
(2)$x$と$y$が満たすべき関係式を求めよ.
(3)$x$と$y$が$(2)$の関係式を満たすとき,$2x-3y$の値の範囲を求めよ.
(4)三角形$\mathrm{PAB}$の面積の最大値を求めよ.また,そのときの$\angle \mathrm{PAB}$の大きさを求めよ.
山形大学 国立 山形大学 2011年 第1問
次の問いに答えよ.

(1)$0 \leqq x < 2\pi$のとき,方程式$6 \sin^2 x+5 \cos x-2=0$を満たす$x$の値を求めよ.
(2)座標空間に4点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$,C$(-1,\ 1,\ 0)$,D$(1,\ 1,\ -9)$がある.四面体ABCDの体積を求めよ.
(3)7で割ると2余り,11で割ると3余るような300以下の自然数をすべて求めよ.
山形大学 国立 山形大学 2011年 第4問
座標空間内に2点A$(0,\ 2,\ 1)$,B$(2,\ -1,\ 2)$があり,点P$(x,\ y,\ 0)$は$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$を満たしながら動くものとする.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$を成分で表せ.
(2)$x$と$y$が満たすべき関係式を求めよ.
(3)$x$と$y$が(2)の関係式を満たすとき,$2x-3y$の値の範囲を求めよ.
(4)三角形PABの面積の最大値を求めよ.また,そのときの$\angle \text{PAB}$の大きさを求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
座標空間の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 1,\ 0)$,$\mathrm{B}(1,\ 3,\ 0)$,$\mathrm{C}(2,\ 2,\ 3)$を頂点とする四面体$\mathrm{OABC}$を考える.

(1)四面体$\mathrm{OABC}$の体積は$[コ]$である.
(2)辺$\mathrm{OC}$上に動点$\mathrm{P}$をとる.三角形$\mathrm{PAB}$の面積が最小になるとき,$\mathrm{P}$ $([サ],\ [シ],\ [ス])$であり,その最小値は$[セ]$である.
(3)(2)で選んだ点Pを$\text{P}_0$とし,$\text{P}_0$から辺ABに下ろした垂線と辺ABの交点を$\text{Q}_0$とする.$\text{Q}_0([ソ],\ [タ],\ 0)$であり,三角形O$\text{Q}_0$Cの面積は[チ]である.また,四面体OA$\text{Q}_0\text{P}_0$の体積は[ツ]となる.
早稲田大学 私立 早稲田大学 2011年 第2問
原点をOとする座標空間において,2点A(3,\ 3,\ 4),\ B(1,\ 0,\ 0)がある.\\
次の条件を満たす点Pの集合を$C$とする.
\[ |\overrightarrow{\mathrm{AP}}| = 1, \quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{AP}} = 0 \]
また,次の条件を満たす点Qの集合を$S$とする.
\[ |\overrightarrow{\text{OQ}}| = 1 \]
次の設問に答えよ.

(1)点Qを$S$上の点とするとき,$|\overrightarrow{\text{AQ}}|$の最大値と最小値を求めよ.
(2)点Pを$C$上の点とし,点Qを$S$上の点とするとき,$|\overrightarrow{\text{PQ}}|$の最大値と最小値を求めよ.
スポンサーリンク

「座標空間」とは・・・

 まだこのタグの説明は執筆されていません。