タグ「底面」の検索結果

1ページ目:全84問中1問~10問を表示)
長崎大学 国立 長崎大学 2016年 第2問
空間において,$3$点$\mathrm{A}(5,\ 0,\ 1)$,$\mathrm{B}(4,\ 2,\ 0)$,$\mathrm{C}(0,\ 1,\ 5)$を頂点とする三角形$\mathrm{ABC}$がある.以下の問いに答えよ.

(1)線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)原点$\mathrm{O}(0,\ 0,\ 0)$から平面$\mathrm{ABC}$に垂線を下し,平面$\mathrm{ABC}$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{AH}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とおくとき,実数$\ell,\ m$の値を求めよ.
(4) 直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{AH}}=k \overrightarrow{\mathrm{AM}}$とおくとき,実数$k$の値と三角形$\mathrm{HBC}$の面積$T$を求めよ.
(5)原点$\mathrm{O}$を頂点,四角形$\mathrm{ABHC}$を底面とする四角錐$\mathrm{O}$-$\mathrm{ABHC}$の体積$V$を求めよ.
早稲田大学 私立 早稲田大学 2016年 第4問
$xy$平面上の原点を中心とする単位円を底面とし,点$\mathrm{P}(t,\ 0,\ 1)$を頂点とする円錐を$\mathrm{K}$とする.$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,円錐$\mathrm{K}$の表面および内部が通過する部分の体積は$\displaystyle \frac{\pi+[ナ]}{[ニ]}$である.
津田塾大学 私立 津田塾大学 2016年 第2問
$1$辺の長さが$L \, \mathrm{cm}$の正六角形から図のように斜線部を取り除き,点線にそって${90}^\circ$折り曲げて,底面と側面だけからなる正六角柱の容器を作る.この容器の容積の最大値を求めよ.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,$4$つの正三角形を側面とする正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.$\mathrm{OA}$と$\mathrm{OC}$を$4:1$に内分する点をそれぞれ$\mathrm{P}$と$\mathrm{R}$,正の実数$r$に対して$\mathrm{OB}$を$1:r$に内分する点を$\mathrm{Q}$とする.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{PR}} \cdot \overrightarrow{\mathrm{OQ}}$を計算せよ.答が$r$の有理式になる場合は,$1$つの既約分数式で解答せよ.
(2)線分$\mathrm{PR}$の中点を$\mathrm{M}$とする.$\mathrm{QM}$と$\mathrm{OD}$が平行になる$r$を求めよ.
(3)$\mathrm{QM}$と$\mathrm{OD}$が平行なとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面$\alpha$で正四角錐$\mathrm{O}$-$\mathrm{ABCD}$を$2$つの多面体に切り分ける.このとき,$\alpha$による切り口の図形の面積,および,切り分けたうち頂点$\mathrm{O}$を含む多面体の体積を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
正方形$\mathrm{ABCD}$を底面,点$\mathrm{P}$を頂点とする正四角錐$\mathrm{PABCD}$に内接する球について考える.ただし,正四角錐とは,頂点と底面の正方形の中心を結ぶ直線が底面と垂直になる角錐である.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$および線分$\mathrm{PM}$の長さをそれぞれ$a,\ b$とする.次の問に答えよ.

(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{2}{3}$のとき,$\sin \theta \cos \theta=[ア]$,$\sin^3 \theta+\cos^3 \theta=[イ]$である.
(2)高さが$1$の円錐を,頂点から$a$の距離で底面に平行な面で上下$2$つに切断する.体積が$2$等分されるのは,$a=[ウ]$のときである.
(3)$\displaystyle \sum_{k=5}^{20}(2k-7)$の値は$[エ]$である.
(4)多項式$(x-1)(x-2)(x-3)$を$x-4$で割った余りを$A$,$(x-2)(x-3)(x-4)$を$x-1$で割った余りを$B$,$(x-3)(x-4)(x-1)$を$x-2$で割った余りを$C$とすると,$A+B+C=[オ]$である.
(5)定積分$\displaystyle \int_{-2}^5 |x^2-9| \, dx$の値は$[カ]$である.
(6)$5$人の大人と$3$人の子どもが,円形のテーブルの周りに座る.子ども同士が隣り合わない座り方は全部で$[キ]$通りある.ただし,回転して一致するものは同じ座り方とみなす.
(7)半透明のガラス板がある.光がガラス板$1$枚を通ると,その強さが$8$割に減る.光の強さが当初の$1$割未満となるのは,ガラス板を$[ク]$枚以上重ねたときである.ただし,必要であれば$\log_{10}2=0.3010$を用いよ.
(8)$1$周$300 \, \mathrm{m}$の池の周りを,$\mathrm{A}$は徒歩で,$\mathrm{B}$は自転車で,同じ地点から同時にスタートし,同じ方向に回る.自転車が徒歩の$5$倍の速さで進むとき,$\mathrm{B}$が池を$1$周したあと,$\mathrm{A}$を初めて追い抜く地点は,スタート地点から進行方向に$[ケ] \, \mathrm{m}$進んだ地点である.
長崎大学 国立 長崎大学 2015年 第2問
$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ 0,\ 0)$,$\mathrm{C}(0,\ 4,\ 0)$,$\mathrm{D}(0,\ 0,\ 4)$をとり,下図のように線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{OD}$を$3$辺とする立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.辺$\mathrm{DE}$,$\mathrm{BF}$の中点を,それぞれ$\mathrm{M}$,$\mathrm{N}$とする.以下の問いに答えよ.
(図は省略)

(1)ベクトル$\overrightarrow{\mathrm{GM}}$および$\overrightarrow{\mathrm{GN}}$を成分で表せ.
(2)$\angle \mathrm{MGN}=\theta$とする.$\cos \theta$の値を求めよ.
(3)$3$点$\mathrm{G}$,$\mathrm{M}$,$\mathrm{N}$を頂点とする三角形$\mathrm{GMN}$の面積を求めよ.
(4)三角錐$\mathrm{FGMN}$において,三角形$\mathrm{GMN}$を底面としたときの高さを求めよ.
(5)三角形$\mathrm{GMN}$を含む平面と線分$\mathrm{OF}$との交点を$\mathrm{P}$とする.このとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OF}}$を用いて表せ.
金沢工業大学 私立 金沢工業大学 2015年 第4問
半径が$1$の球に内接する直円柱を考え,この直円柱の底面の半径を$x$とし,体積を$V$とする.

(1)$V=[ケ] \pi x^2 \sqrt{[コ]-x^2}$である.

(2)$\displaystyle \frac{dV}{dx}=\frac{[サ] \pi x(2-[シ]x^2)}{\sqrt{[ス]-x^2}}$である.

(3)$V$が最大になるのは$\displaystyle x=\frac{\sqrt{[セ]}}{[ソ]}$のときであり,その最大値は$\displaystyle \frac{[タ] \sqrt{[チ]}}{[ツ]} \pi$である.
津田塾大学 私立 津田塾大学 2015年 第3問
正方形$\mathrm{ABCD}$を底面とし,頂点を$\mathrm{O}$とする四角錐$\mathrm{OABCD}$を考える.正方形$\mathrm{ABCD}$の$1$辺の長さは$2$で,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\sqrt{3}$とする.また,$\mathrm{A}$から$\mathrm{OB}$に下ろした垂線を$\mathrm{AM}$とする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積,および$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(2)$\angle \mathrm{AMC}=\theta (0<\theta<\pi)$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)$2$次方程式$x^2+kx+k+8=0$が異なる$2$つの実数解$\alpha$,$\beta$をもつとする.このとき,定数$k$の値の範囲は$k<[ア]$または$k>[イ]$である.さらに,このとき$\alpha^2+\beta^2=19$となるような定数$k$の値は$k=[ウ]$である.
(2)$xyz$空間の$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$,$\mathrm{C}(0,\ \sqrt{3},\ 0)$を$3$頂点とする三角形を底面にもち,$z \geqq 0$の部分にある正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{D}$の座標は$[エ]$である.また$4$頂点において正四面体$\mathrm{ABCD}$に外接する球の中心$\mathrm{E}$の座標は$[オ]$であり,$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EB}}$のなす角を$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\cos \theta=[カ]$である.
(3)$n$を自然数とする.白玉$5$個と赤玉$n$個が入っている袋から同時に玉を$2$個取り出すとき,取り出した玉の色が異なる確率を$p_n$とする.このとき$p_n=[キ]$である.また$\displaystyle p_n \leqq \frac{1}{5}$となる最小の自然数$n$は$n=[ク]$である.
スポンサーリンク

「底面」とは・・・

 まだこのタグの説明は執筆されていません。