タグ「底辺」の検索結果

1ページ目:全12問中1問~10問を表示)
金沢大学 国立 金沢大学 2015年 第1問
四面体$\mathrm{OABC}$において,$3$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$はどの$2$つも互いに垂直であり,$h>0$に対して,
\[ |\overrightarrow{\mathrm{OA}}|=1,\quad |\overrightarrow{\mathrm{OB}}|=2,\quad |\overrightarrow{\mathrm{OC}}|=h \]
とする.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面上の点$\mathrm{P}$は,$\overrightarrow{\mathrm{CP}}$が$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$のどちらとも垂直となる点であるとする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}}$とするとき,$\alpha$と$\beta$を$h$を用いて表せ.
(2)直線$\mathrm{OP}$と直線$\mathrm{AB}$が直交していることを示せ.
(3)$\triangle \mathrm{PAB}$は,辺$\mathrm{AB}$を底辺とする二等辺三角形ではないことを示せ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \int_2^4 (x^2+ax+2) \, dx=\frac{14}{3}$を満たす$a$の値は$[ア]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,$\cos \theta+\sqrt{3} \sin \theta$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)実数$x$が$0<x<1$かつ${(\log_2 x)}^2+\log_2 x-6=0$を満たすとき,$x$の値は$[エ]$である.
(4)$3$次方程式$(x-1)(x^2+ax+a+2)=0$が$2$重解をもつとき,$a$の値をすべて求めると,$[オ]$である.
(5)実数$a,\ b$を用いて$\displaystyle \frac{1}{2+i}+\frac{1}{3+4i}=a+bi$と表すとき,$a=[カ]$であり,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$3$つのさいころを同時に投げるとき,ちょうど$2$つのさいころが同じ目になる確率は$[ク]$である.
(7)ベクトル$(2,\ a,\ b)$が$2$つのベクトル$(1,\ -1,\ 3)$,$(-2,\ 1,\ 1)$に垂直であるとき,$(a,\ b)=[ケ]$である.
(8)底辺の長さが$a$,高さが$b$の三角形が$2a+b=6$を満たすとき,三角形の面積の最大値は$[コ]$である.
西南学院大学 私立 西南学院大学 2014年 第4問
半径$R$の円に内接する鋭角三角形$\mathrm{ABC}$の頂点$\mathrm{A}$から底辺$\mathrm{BC}$に下した垂線の足を$\mathrm{H}$とする.$\angle \mathrm{A}={45}^\circ$,$\mathrm{BH}=3$,$\mathrm{CH}=2$のとき,以下の値を求めよ.

(1)$\displaystyle \tan \angle \mathrm{BAH}=\frac{[ネ]}{[ノ]}$

(2)$\displaystyle \cos \angle \mathrm{CAH}=\frac{[ハ] \sqrt{[ヒフ]}}{[ヘホ]}$

(3)$\displaystyle R=\frac{[マ] \sqrt{[ミ]}}{[ム]}$
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
早稲田大学 私立 早稲田大学 2012年 第3問
次の問いに答えよ.

(1)整数$x,\ y$が$x^2-23y^2=1$を満たすとき,次の問いに答えよ.

(2)$1<x+\sqrt{23}y<49$のとき,$x=[ケ]$,$y=[コ]$である.
(3)$1$より小なる$x+\sqrt{23}y$が最大になるのは$x=[サ]$,$y=[シ]$のときである.

(4)曲線$y=x^2$,$x$軸,および直線$x=1$で囲まれた図形の面積を$S$とする.この図形の面積の近似値を以下の方法を用いて求める.区間$0 \leqq x \leqq 1$を$n$等分し,$i (1 \leqq i \leqq n)$番目の区間$\displaystyle\frac{(i-1)}{n} \leqq x \leqq \frac{i}{n}$を底辺とする高さ$\displaystyle \left( \frac{i-\displaystyle\frac{1}{2}}{n} \right)^2$の長方形を考える.これらの長方形の面積の$i$についての総和を$S_n$とする.

(i) $S_n=[ス]$である.
(ii) $\displaystyle |S-S_n| \leq \frac{1}{30000}$となる$n$の最小値は$[セ]$である.
久留米大学 私立 久留米大学 2012年 第5問
点$\mathrm{A}(2,\ 2,\ 3)$と点$\mathrm{B}(2,\ 4,\ 1)$の中点を$\mathrm{M}$,原点を$\mathrm{O}$とする.ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{OM}}$ともに直交する単位ベクトル$\overrightarrow{t}$を成分表示で表すと$[$12$]$となる.また,$\mathrm{AB}$を底辺とする正三角形$\mathrm{ABC}$が$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{MC}}$の条件を満たすとき,頂点$\mathrm{C}$の座標は$[$13$]$となる.
安田女子大学 私立 安田女子大学 2012年 第3問
$1$辺の長さが$1$の正方形の紙を用意し,頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の図のように,正方形の各辺を底辺とする高さ$x$の$4$つの二等辺三角形$\triangle \mathrm{ABE}$,$\triangle \mathrm{BCF}$,$\triangle \mathrm{CDG}$,$\triangle \mathrm{DAH}$を正方形から切り取り,残りを図の$4$本の線分$\mathrm{EF}$,$\mathrm{FG}$,$\mathrm{GH}$,$\mathrm{HE}$にそって折り曲げて,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が$1$点になるように辺を合わせて四角錐を作るとする.ただし,$\displaystyle 0<x<\frac{1}{2}$とする.このとき,次の問いに答えよ.
(図は省略)

(1)この四角錐の底面となる正方形$\mathrm{EFGH}$の面積を求めよ.
(2)この四角錐の表面積となる図の斜線部分の面積を求めよ.
(3)$(2)$で求めた四角錐の表面積が$\displaystyle \frac{1}{2}$のとき,この四角錐の体積を求めよ.
一橋大学 国立 一橋大学 2011年 第4問
$a,\ b,\ c$を正の定数とする.空間内に3点A$(a,\ 0,\ 0)$,B$(0,\ b,\ 0)$,C$(0,\ 0,\ c)$がある.

(1)辺ABを底辺とするとき,$\triangle$ABCの高さを$a,\ b,\ c$で表せ.
(2)$\triangle$ABC,$\triangle$OAB,$\triangle$OBC,$\triangle$OCAの面積をそれぞれ$S,\ S_1,\ S_2,\ S_3$とする.ただし,Oは原点である.このとき,不等式
\[ \sqrt{3}S \geqq S_1 +S_2+S_3 \]
が成り立つことを示せ.
(3)(2)の不等式において等号が成り立つための条件を求めよ.
東京大学 国立 東京大学 2011年 第4問
座標平面上の1点P$\displaystyle \left( \frac{1}{2},\ \frac{1}{4} \right)$をとる.放物線$y=x^2$上の2点Q$(\alpha,\ \alpha^2)$,R$(\beta,\ \beta^2)$を,3点P,Q,RがQRを底辺とする二等辺三角形をなすように動かすとき,$\triangle$PQRの重心G$(X,\ Y)$の軌跡を求めよ.
東京大学 国立 東京大学 2011年 第4問
座標平面上の1点P$\displaystyle \left(\frac{1}{2},\ \frac{1}{4} \right)$をとる.放物線$y=x^2$上の2点Q$(\alpha,\ \alpha^2)$,R$(\beta,\ \beta^2)$を,3点P,Q,RがQRを底辺とする二等辺三角形をなすように動かすとき,$\triangle \text{PQR}$の重心G$(X,\ Y)$の軌跡を求めよ.
スポンサーリンク

「底辺」とは・・・

 まだこのタグの説明は執筆されていません。