タグ「平面」の検索結果

95ページ目:全1904問中941問~950問を表示)
鹿児島大学 国立 鹿児島大学 2013年 第4問
$xy$平面において,曲線$y=e^x$と$3$直線$y=x+1,\ x=1,\ x=-1$で囲まれた部分を$D$とする.ただし$e$は自然対数の底である.次の各問いに答えよ.

(1)関数$f(x)=e^x-(x+1)$の増減,極値,凹凸を$-1 \leqq x \leqq 1$の範囲で調べ,増減表にまとめよ.
(2)$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる回転体の体積$V$を求めよ.
東京農工大学 国立 東京農工大学 2013年 第4問
$xy$平面上に$2$つの曲線
\[ \begin{array}{llll}
C_1: & y=\tan x+\displaystyle\frac{\sqrt{3}}{3} & & \displaystyle\left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right) \\
C_2: & \displaystyle y=\sqrt{3}k \left( \cos 2x-\frac{1}{2} \right) & & \displaystyle\left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)
\end{array} \]
がある.ただし$k$は実数とする.このとき,次の問いに答えよ.

(1)$t=\tan x$とおく.$\cos 2x$を$t$の式で表せ.
(2)$\displaystyle k=-\frac{4}{3}$のとき,$C_1$と$C_2$で囲まれた部分の面積$S$を求めよ.
(3)$C_1$と$C_2$の共有点の個数が$1$になるときの$k$の範囲を求めよ.
群馬大学 国立 群馬大学 2013年 第13問
空間内に$4$点$\mathrm{A}(2,\ 0,\ 2)$,$\mathrm{B}(6,\ 0,\ 0)$,$\mathrm{C}(4,\ 2,\ 2)$,$\mathrm{D}(5,\ 1,\ 7)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面を$\alpha$とし,点$\mathrm{D}$から$\alpha$に下ろした垂線と$\alpha$の交点を$\mathrm{H}$とする.点$\mathrm{E}$を,$\mathrm{H}$が線分$\mathrm{DE}$の中点となるようにとるとき,$\mathrm{E}$の座標を求めよ.
(2)$0<t<1$とする.線分$\mathrm{AB}$を$t:1-t$に内分する点を$\mathrm{P}$,線分$\mathrm{BC}$を$t^2:1-t^2$に内分する点を$\mathrm{Q}$,線分$\mathrm{CD}$の中点を$\mathrm{R}$とするとき,四面体$\mathrm{BPQR}$の体積の最大値を求めよ.
群馬大学 国立 群馬大学 2013年 第16問
座標平面上に原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2 \sqrt{2},\ 0)$がある.$0<t<1$のとき,線分$\mathrm{AO}$,$\mathrm{OB}$を$t:1-t$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とする.また,$t=0$,$t=1$のとき,$\mathrm{R}$はそれぞれ$\mathrm{A}$,$\mathrm{B}$に一致するものとし,$t$を$0 \leqq t \leqq 1$の範囲で動かしたときの$\mathrm{R}$の軌跡を$C$とする.

(1)$C$を媒介変数$t$を用いて表せ.
(2)点$\mathrm{R}$と原点$\mathrm{O}$の距離の最小値を求めよ.
(3)$C$と線分$\mathrm{AB}$で囲まれた部分の面積$S$を求めよ.
群馬大学 国立 群馬大学 2013年 第5問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円周$C$上に定点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$をとる.$C$の上半円周($y$座標が正の部分)上を動く点を$\mathrm{P}$,下半円周($y$座標が負の部分)上を動く点を$\mathrm{Q}$とする.$\displaystyle \angle \mathrm{PAB}=\alpha \ \left( 0<\alpha<\frac{\pi}{2} \right)$,$\displaystyle \angle \mathrm{QAB}=\beta \ \left( 0<\beta<\frac{\pi}{2} \right)$とし,直線$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}(t,\ 0)$とする.

(1)$t$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle \alpha+\beta=\frac{\pi}{4}$のとき,$t$のとり得る値の範囲を求めよ.
(3)線分$\mathrm{PR}$の長さと線分$\mathrm{RQ}$の長さの比が$2:1$のとき,$t$を$\alpha$を用いて表せ.
山口大学 国立 山口大学 2013年 第2問
$\displaystyle f(x)=\tan x,\ g(x)=\frac{4x}{\pi (\pi-2x)}$とする.$xy$平面において,曲線$y=f(x)$ \ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$と$y=g(x)$ \ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$をそれぞれ$C_1,\ C_2$とするとき,次の問いに答えなさい.

(1)$\displaystyle 0<x<\frac{\pi}{2}$のとき,不等式$f(x)>g(x)$を証明しなさい.
(2)$\displaystyle 0<a<\frac{\pi}{2}$のとき,$2$曲線$C_1,\ C_2$と直線$x=a$で囲まれた図形の面積を$S(a)$とする.このとき,$\displaystyle \lim_{a \to \frac{\pi}{2}-0}S(a)$を求めなさい.
(3)$m$を実数とし,$2$曲線$C_1,\ C_2$と直線$y=mx+1$で囲まれた図形の面積を$T(m)$とする.このとき,$\displaystyle \lim_{m \to \infty}T(m)$を求めなさい.
山形大学 国立 山形大学 2013年 第4問
自然数$n$に対し,座標平面上の点$(n,\ 1)$を$\mathrm{P}_n$とする.また,$r$を正の実数とする.このとき,次の問に答えよ.

(1)$1$次変換$f$は,すべての$n$に対して$f(\mathrm{P}_n)=\mathrm{P}_{n+1}$を満たすとする.$f$を表す行列$A$を求めよ.
(2)$1$次変換$g$は,点$(1,\ 1)$を点$(-2r,\ 1)$に,点$(-2r,\ 1)$を点$(2r^2-r,\ 1)$に移すとする.$g$を表す行列$B$を求めよ.
(3)$C=ABA^{-1}$とする.行列$C^n$を推定し,それが正しいことを数学的帰納法によって示せ.
(4)行列$C^n$で表される$1$次変換による点$(1,\ r)$の像の$x$座標を$x_n$とする.$r<1$のとき,$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第1問
一辺の長さが$1$の正十角形$D$が平面上にある.$D$の外接円を$C$とおき,$C$の中心を$\mathrm{O}$,$C$の半径を$R$とおく.$D$の頂点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_{10}$は$C$上でこの順に反時計回りに並んでいるとする.点$\mathrm{P}_2$,$\mathrm{P}_3$から直線$\mathrm{OP}_1$へ下ろした垂線をそれぞれ$\mathrm{P}_2 \mathrm{H}_2$,$\mathrm{P}_3 \mathrm{H}_3$とする.

(1)$\displaystyle R=\frac{1}{2 \sin \theta_1}$を満たす$\theta_1 \ (0^\circ<\theta_1<90^\circ)$を求めよ.
(2)$\mathrm{P}_1 \mathrm{H}_2=\sin \theta_2$,$\mathrm{H}_2 \mathrm{H}_3=\cos \theta_3$を満たす$\theta_2,\ \theta_3 \ (0^\circ<\theta_2<90^\circ,\ 0^\circ<\theta_3<90^\circ)$を求めよ.
(3)等式$\mathrm{P}_1 \mathrm{H}_2+\mathrm{H}_2 \mathrm{H}_3+\mathrm{H}_3 \mathrm{O}=R$を用いて,$\sin 18^\circ$の値を求めよ.
(4)$D$の面積を$S$とするとき,$S^2$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第3問
$a$を正の定数とし,$m$を自然数とする.$xy$平面上の$2$曲線$C_1:y=ax^2 \ (x \geqq 0)$,$C_2:y=(\log x)^{m} \ (x \geqq 1)$および点$\mathrm{P}$は次の条件を満たしている.

$C_1$と$C_2$は$\mathrm{P}$を通り,$\mathrm{P}$における$C_1$の接線と$\mathrm{P}$における$C_2$の接線は一致する.
(1)$a$の値および$\mathrm{P}$の$x$座標を$m$を用いて表せ.
(2)関数$\displaystyle f(x)=\frac{(\log x)^m}{x^2} \ (x \geqq 1)$の最大値を求め,$x \geqq 1$において不等式$ax^2 \geqq (\log x)^m$が成り立つことを示せ.
(3)自然数$n$に対して,不定積分$\displaystyle \int (\log x)^n \, dx$を$I_n$とおく.$n \geqq 2$のとき,部分積分法により,$I_n$を$I_{n-1}$を用いて表せ.
(4)$m=2$のとき,$C_1,\ C_2$および$x$軸で囲まれた部分の面積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第4問
$xy$平面上の曲線$\displaystyle C:y=\frac{1}{x} \ (x>0)$を考える.$0<p<q$のとき,$C$上の$2$点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$,$\displaystyle \mathrm{Q} \left( q,\ \frac{1}{q} \right)$を通る直線と$C$で囲まれる図形の面積を$S$とし,その図形を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.

(1)$\displaystyle r=\frac{q}{p}$とおくとき,$S$および$V$の値を$p,\ r$を用いて表せ.
(2)自然数$n$に対して,$p=3^{n-1}$,$q=3^{n}$のときの$V$の値を$V_n$とおく.無限級数$\displaystyle \sum_{n=1}^\infty V_n$の和を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。