タグ「平面」の検索結果

91ページ目:全1904問中901問~910問を表示)
室蘭工業大学 国立 室蘭工業大学 2013年 第4問
平面上の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$は互いに異なる点とする.三角形$\mathrm{OAB}$において
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=3 \]
かつ$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$60^\circ$とする.$\ell$は点$\mathrm{A}$を通り$\overrightarrow{\mathrm{OA}}$が法線ベクトルである直線,$m$は点$\mathrm{B}$を通り$\overrightarrow{\mathrm{AB}}$が法線ベクトルである直線とする.また,$\ell$と$m$は点$\mathrm{P}$で交わるとする.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{AP}}$であることを用いて,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$を求めよ.
(2)内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}}$を求めよ.
(3)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$を満たす実数$s,\ t$の値を求めよ.
筑波大学 国立 筑波大学 2013年 第3問
$xyz$空間において,点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$を通る平面上にあり,正三角形$\mathrm{ABC}$に内接する円板を$D$とする.円板$D$の中心を$\mathrm{P}$,円板$D$と辺$\mathrm{AB}$の接点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標を求めよ.
(2)円板$D$が平面$z=t$と共有点をもつ$t$の範囲を求めよ.
(3)円板$D$と平面$z=t$の共通部分が線分であるとき,その線分の長さを$t$を用いて表せ.
(4)円板$D$を$z$軸のまわりに回転してできる立体の体積を求めよ.
(図は省略)
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の各問に答えよ.

(1)$\overrightarrow{\mathrm{AM}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき$t$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第4問
$a,\ b$を実数として,関数$f(x)=x^3-ax^2+bx+1$について次の各問に答えよ.

(1)微分係数$f^\prime(0)$,$f^\prime(1)$を$a,\ b$を用いて表せ.
(2)$f(x)$が極大値と極小値をもつための$a,\ b$の条件を求めよ.
(3)$f(x)$が極大値と極小値をもつとき,極大値と極小値の平均が$1$となるための$a,\ b$の条件を求めて,$ab$平面上に図示せよ.
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.以下の各問に答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき,$t$の値を求めよ.
東京学芸大学 国立 東京学芸大学 2013年 第2問
座標平面上に,点$\mathrm{A}(0,\ -2)$と円$C:x^2+(y-2)^2=4$がある.円$C$上の点$\mathrm{P}$に対し,線分$\mathrm{AP}$の中点を$\mathrm{M}$,$\mathrm{M}$を通り$\mathrm{AP}$に垂直な直線を$\ell$とする.下の問いに答えよ.

(1)点$\mathrm{P}$が円$C$上を動くとき,点$\mathrm{M}$の軌跡を求めよ.
(2)直線$\ell$が円$C$に接するとき,点$\mathrm{M}$の座標を求めよ.
(3)点$\mathrm{P}$が円$C$上を動くとき,直線$\ell$が通る点全体の領域を求め,図示せよ.
茨城大学 国立 茨城大学 2013年 第1問
原点を$\mathrm{O}$とする座標平面上を運動する点$\mathrm{P}(x,\ y)$が
\[ x=\sin t,\quad y=\sin 2t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
で表されるとき,点$\mathrm{P}$の描く曲線を$C$とする.($C$は右図のように \\
なっている.)以下の各問に答えよ.
\img{85_2188_2013_1}{40}


(1)曲線$C$と$x$軸が囲む図形の面積を求めよ.
(2)$\displaystyle 0<t<\frac{\pi}{2}$のとき,点$\mathrm{P}$における$C$の接線$\ell$の方程式を求めよ.
(3)$\displaystyle 0<t<\frac{\pi}{2}$のとき,(2)の接線$\ell$の傾きが負になる$t$の範囲を求めよ.
(4)$t$が(3)で求めた範囲にあるとき,$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,三角形$\mathrm{OPQ}$と三角形$\mathrm{OPR}$の面積をそれぞれ$S$と$T$とする.$c=\cos t$として,$S,\ T$をそれぞれ$c$を用いて表せ.
(5)(4)の$S$と$T$について$S=T$が成り立つとき,直線$\mathrm{OP}$の方程式を求めよ.
電気通信大学 国立 電気通信大学 2013年 第4問
座標平面上の$2$つの直線$\ell,\ m$を,それぞれ
\[ \ell:y=\frac{1}{\sqrt{3}}x,\quad m:y=-\frac{1}{\sqrt{3}}x \]
とし,$\ell$上に点$\mathrm{A}(\sqrt{3}s,\ s)$を,$m$上に点$\mathrm{B}(\sqrt{3}t,\ -t)$をとる. \\
ただし,$s>0$,$t>0$とする.さらに,正三角形$\mathrm{ABC}$を,頂点$\mathrm{C}$が直線$\mathrm{AB}$に関して原点$\mathrm{O}$と同じ側になるように定める.このとき,以下の問いに答えよ.
\img{178_2358_2013_1}{50}


(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一円周上にあることを示し,点$\mathrm{C}$が$y$軸上にあることを証明せよ.
(2)点$\mathrm{C}$の$y$座標を$s,\ t$の式で表せ.
(3)点$\mathrm{D}(X,\ Y)$を,直線$\mathrm{AB}$に関して点$\mathrm{C}$と対称な点とする.このとき,$X$と$Y$をそれぞれ$s,\ t$の式で表せ.
(4)線分$\mathrm{AB}$の長さを$s,\ t$の式で表せ.
(5)点$\mathrm{A}$,$\mathrm{B}$が線分$\mathrm{AB}$の長さを$\sqrt{3}$に保ちながら動くとき,点$\mathrm{D}$の軌跡を求め,その概形を図示せよ.
防衛医科大学校 国立 防衛医科大学校 2013年 第1問
以下の問に答えよ.

(1)$\mathrm{AB}=\mathrm{AC}$である二等辺三角形$\mathrm{ABC}$において辺$\mathrm{AC}$上に$\mathrm{AD}=\mathrm{BD}=\mathrm{BC}$となる点$\mathrm{D}$をとることができるとき,$\displaystyle \sin \frac{A}{2}$はいくらか.
(2)実数の組$(x,\ y)$が連立不等式$\left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq \displaystyle\frac{x^2}{\sqrt{2}}
\end{array} \right.$を満たすとき,$\sqrt{2}x+y$の最大値と最小値を求めよ.
(3)座標空間の$2$点$\mathrm{A}(1,\ -2,\ -1)$,$\mathrm{B}(4,\ 2,\ 4)$を通る直線$\ell_1$上にあり,原点までの距離が$34$の点を$\mathrm{C}$($\mathrm{C}$の$x$座標は正とする).点$\mathrm{A}$を通り方向ベクトル$\overrightarrow{h}=(4,\ -3,\ -5)$をもつ直線を$\ell_2$とする.このとき,$\mathrm{C}$と$\ell_2$を含む平面において,$\ell_2$に関して$\mathrm{C}$と対称な点$\mathrm{D}$の座標を求めよ.
滋賀医科大学 国立 滋賀医科大学 2013年 第2問
平面上で$2$つの円$S,\ S^\prime$が点$\mathrm{P}$で内接している.ただし$S^\prime$が$S$より小さいとする.円$S,\ S^\prime$の中心をそれぞれ$\mathrm{O}$,$\mathrm{O}^\prime$とおく.円$S^\prime$上にあって直線$\mathrm{PO}^\prime$上にはない点$\mathrm{Q}$をとる.直線$\mathrm{PQ}$と円$S$との$\mathrm{P}$とは異なる交点を$\mathrm{A}$,直線$\mathrm{AO}$と円$S$との$\mathrm{A}$とは異なる交点を$\mathrm{B}$,直線$\mathrm{BO}^\prime$と円$S$との$\mathrm{B}$とは異なる交点を$\mathrm{C}$,直線$\mathrm{CQ}$と円$S$との$\mathrm{C}$とは異なる交点を$\mathrm{D}$とする.

(1)$\mathrm{AO} \para \, \mathrm{QO}^\prime$を示せ.
(2)$\mathrm{DB}=\mathrm{BP}$を示せ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。