タグ「平面」の検索結果

87ページ目:全1904問中861問~870問を表示)
広島大学 国立 広島大学 2013年 第5問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)点$\mathrm{O}(0,\ 0)$の隣接点をすべて求めよ.また,領域$D$内の格子点$\mathrm{P}$が直線$x+y=n$上にあるとき,$\mathrm{P}$の隣接点の個数を求めよ.
(2)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(3)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
金沢大学 国立 金沢大学 2013年 第2問
座標平面上の点$\mathrm{P}$は,硬貨を$1$回投げて表が出れば$x$軸の正の方向に$2$,裏が出れば$y$軸の正の方向に$1$だけ進むことにする.最初,$\mathrm{P}$は原点にある.硬貨を$5$回投げた後の$\mathrm{P}$の到達点について,次の問いに答えよ.

(1)$\mathrm{P}$の到達点が$(10,\ 0)$となる確率を求めよ.また,$(6,\ 2)$となる確率を求めよ.
(2)$2$点$(10,\ 0)$,$(6,\ 2)$を通る直線$\ell$の方程式を求めよ.また,$\mathrm{P}$の到達点はすべて直線$\ell$上にあることを示せ.
(3)$(2)$で求めた直線$\ell$と原点との距離を求めよ.
(4)$\mathrm{P}$の到達点と原点との距離$d$が,$2 \sqrt{5}<d \leqq 5$となる確率を求めよ.
信州大学 国立 信州大学 2013年 第1問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が$1$である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第2問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が1である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第3問
$xy$平面上に4点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(2,\ 1)$,$\mathrm{P}(u,\ v)$がある.点$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}} \cos \alpha+\overrightarrow{\mathrm{OB}} \sin \beta \qquad (\text{ただし,} 0 \leqq \alpha \leqq \pi,\ 0 \leqq \beta \leqq \pi) \]
を満たすとき,点$\mathrm{P}$の存在する領域を図示せよ.
信州大学 国立 信州大学 2013年 第3問
$0<t<1$とする.$xy$平面上の曲線$\displaystyle C_1:y=t \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=2 \sin x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$t$を用いて表せ.
(2)2曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を$S(t)$とする.また,2曲線$C_1,\ C_2$と,$x$軸上の2点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$,$(\pi,\ 0)$を結ぶ線分で囲まれた図形の面積を$T(t)$とする.このとき,$S(t)$と$T(t)$を求めよ.
(3)極限値$\displaystyle \lim_{t \to +0}\frac{t^2T(t)}{S(t)}$を求めよ.
神戸大学 国立 神戸大学 2013年 第2問
$a,\ b,\ c$は実数とし,$a<b$とする.平面上の相異なる$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{C}(c,\ c^2)$が,辺$\mathrm{AB}$を斜辺とする直角三角形を作っているとする.次の問いに答えよ.

(1)$a$を$b,\ c$を用いて表せ.
(2)$b-a \geqq 2$が成り立つことを示せ.
(3)斜辺$\mathrm{AB}$の長さの最小値と,そのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
九州大学 国立 九州大学 2013年 第2問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.ただし,点$\mathrm{P}$は内積に関する条件$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{4}$,および$\displaystyle \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{2}$をみたす.辺$\mathrm{AP}$を$2:1$に内分する点を$\mathrm{M}$とし,辺$\mathrm{CP}$の中点を$\mathrm{N}$とする.さらに,点$\mathrm{P}$と直線$\mathrm{BC}$上の点$\mathrm{Q}$を通る直線$\mathrm{PQ}$は,平面$\mathrm{OMN}$に垂直であるとする.このとき,長さの比$\mathrm{BQ}:\mathrm{QC}$,および線分$\mathrm{OP}$の長さを求めよ.
九州大学 国立 九州大学 2013年 第2問
座標平面上で,次の連立不等式の表す領域を$D$とする.
\[ x+2y \leqq 5,\quad 3x+y \leqq 8,\quad -2x-y \leqq 4,\quad -x-4y \leqq 7 \]
点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$x+y$の値が最大となる点を$\mathrm{Q}$とし,最小となる点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)点$\mathrm{Q}$および点$\mathrm{R}$の座標を求めよ.
(2)$a>0$かつ$b>0$とする.点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$ax+by$が点$\mathrm{Q}$でのみ最大値をとり,点$\mathrm{R}$でのみ最小値をとるとする.このとき,$\displaystyle \frac{a}{b}$の値の範囲を求めよ.
九州大学 国立 九州大学 2013年 第1問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,$\mathrm{OP}=\mathrm{AP}=\mathrm{BP}=\mathrm{CP}$をみたす点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.辺$\mathrm{AP}$を$1:3$に内分する点を$\mathrm{D}$,辺$\mathrm{CP}$の中点を$\mathrm{E}$,辺$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.このとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OE}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{PQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$と$t$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(4)直線$\mathrm{PQ}$が平面$\mathrm{ODE}$に垂直であるとき,$t$の値および線分$\mathrm{OP}$の長さを求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。