タグ「平面」の検索結果

86ページ目:全1904問中851問~860問を表示)
広島大学 国立 広島大学 2013年 第3問
座標平面上の$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(t,\ 0)$を考える.ただし,$t \geqq 0$とする.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1$辺とする正三角形は$2$つある.それぞれの正三角形について,$2$点$\mathrm{A}$,$\mathrm{B}$以外の頂点の座標を$t$を用いて表せ.
(2)$(1)$で求めた$2$点のうち$x$座標が小さい方を$\mathrm{C}$とする.$t$を動かすとき,点$\mathrm{C}$の軌跡を図示せよ.
(3)$k$を定数とする.点$\mathrm{B}$と直線$y=kx$上の点$\mathrm{P}$をそれぞれうまく選ぶことで$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を頂点とする正三角形ができるとき,$k$の値の範囲を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
岡山大学 国立 岡山大学 2013年 第2問
行列$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right)$で定まる座標平面上の$1$次変換を$f$とする.ただし,$a,\ b$は実数とする.このとき,以下の問いに答えよ.

(1)原点$\mathrm{O}$とは異なる点$\mathrm{P}(x,\ y)$を$f$で移した点を$\mathrm{Q}$とする.このとき,長さの比の値$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}$は$\mathrm{P}$によらないことを示し,その値を$a,\ b$を用いて表せ.
(2)正の整数$n$に対して,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とするとき,
\[ p_n^2+r_n^2=(a^2+b^2)^n,\quad q_n^2+s_n^2=(a^2+b^2)^n \]
が成り立つことを示せ.
(3)$109^2=l^2+m^2$を満たす正の整数$l,\ m$を一組求めよ.
広島大学 国立 広島大学 2013年 第1問
$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.座標平面上で原点$\mathrm{O}$を通り傾きが$\tan \theta$の直線を$\ell$とし,行列
\[ \left( \begin{array}{cc}
\cos^2 \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin^2 \theta
\end{array} \right) \]
の表す$1$次変換を$f$とする.座標平面上に$2$点$\mathrm{P},\ \mathrm{Q}$がある.次の問いに答えよ.

(1)線分$\mathrm{OP}$が直線$\ell$と垂直であるとき,$1$次変換$f$による点$\mathrm{P}$の像を求めよ.
(2)$1$次変換$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とする.このとき$|\overrightarrow{\mathrm{OR}}| \leqq |\overrightarrow{\mathrm{OQ}}|$が成り立つことを示せ.さらに等号が成立する場合を調べよ.
(3)$1$次変換$f$による点$(1,\ 1)$の像を$\mathrm{S}$とする.このとき$|\overrightarrow{\mathrm{OS}}|$が最大となる$\theta$と最小となる$\theta$をそれぞれ求めよ.
広島大学 国立 広島大学 2013年 第2問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(2)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
(3)領域$D$から異なる格子点を$2$つ選ぶとき,互いに隣接点である確率を求めよ.ただし,異なる格子点の選ばれ方は同様に確からしいものとする.
広島大学 国立 広島大学 2013年 第2問
座標平面上に点$\mathrm{A}(\cos \theta,\ \sin \theta) \ (0<\theta<\pi)$がある.原点を$\mathrm{O}$とし,$x$軸に関して点$\mathrm{A}$と対称な点を$\mathrm{B}$とする.次の問いに答えよ.

(1)$\displaystyle -1< \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} \leqq \frac{1}{2}$となる$\theta$の範囲を求めよ.
(2)点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=2 \overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{OB}} \]
で定める.点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PQ}$とする.$\theta$が(1)で求めた範囲を動くとき,$\triangle \mathrm{POQ}$の面積の最大値を求めよ.
広島大学 国立 広島大学 2013年 第4問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円を$C$とし,$2$点$\mathrm{P}(0,\ 1)$,$\mathrm{Q}(s,\ 0)$を考える.$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$\ell$とし,$\ell$と$C$の交点のうち$\mathrm{P}$ではないものを$\mathrm{R}$とする.次の問いに答えよ.

(1)点$\mathrm{R}$の座標を$s$を用いて表せ.
(2)$x$座標と$y$座標がともに有理数である点を有理点という.$s$が有理数のとき,$\mathrm{R}$は有理点であることを示せ.
広島大学 国立 広島大学 2013年 第4問
平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OB}}|=1$かつ$\angle \mathrm{AOB}=\theta \ (0<\theta<\pi)$を満たすとする.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.$t>1$として,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=-t \overrightarrow{\mathrm{OM}}$となるように定める.$\triangle \mathrm{ABC}$の面積を$S$とする.次の問いに答えよ.

(1)$S$を$t$と$\theta$を用いて表せ.
(2)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$を$t$のみを用いて表せ.
(3)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$が最大となる$t$の値を求めよ.
金沢大学 国立 金沢大学 2013年 第1問
座標平面上に2点$\mathrm{P}(\sqrt{3},\ 0)$,$\mathrm{Q}(\cos \theta,\ 1-\sin \theta)$がある.次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{PQ}}|^2$を$\theta$で表せ.

(2)$\displaystyle \frac{7\pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$を用いて,$\displaystyle \sin \frac{7\pi}{12}$の値を求めよ.

(3)$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \pi$における$|\overrightarrow{\mathrm{PQ}}|^2$の最大値と最小値を求めよ.また,最大値,最小値を与える$\theta$の値を求めよ.
新潟大学 国立 新潟大学 2013年 第4問
平面上の2つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$はそれぞれの大きさが1であり,また平行でないとする.次の問いに答えよ.

(1)$t \geqq 0$であるような実数$t$に対して,不等式
\[ 0<|\overrightarrow{a}+t \overrightarrow{b}|^2 \leqq (1+t)^2 \]
が成立することを示せ.
(2)$t \geqq 0$であるような実数$t$に対して$\displaystyle \overrightarrow{p}=\frac{2t^2 \overrightarrow{b}}{|\overrightarrow{a}+t \overrightarrow{b}|^2}$とおき,$f(t)=|\overrightarrow{p}|$とする.このとき,不等式
\[ f(t) \geqq \frac{2t^2}{(1+t)^2} \]
が成立することを示せ.
(3)$f(t)=1$となる正の実数$t$が存在することを示せ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。