タグ「平面」の検索結果

75ページ目:全1904問中741問~750問を表示)
日本女子大学 私立 日本女子大学 2014年 第3問
座標平面上を動く点$\mathrm{P}$が原点$(0,\ 0)$を出発して,$1$枚の硬貨を投げて表が出たら$x$軸方向の正の向きに$1$だけ進み,裏が出たら$y$軸方向の正の向きに$1$だけ進むとき,次の問いに答えよ.

(1)硬貨を$4$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$に到達する確率を求めよ.
(2)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(5,\ 4)$に到達する確率を求めよ.
(3)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$を通らずに,点$(5,\ 4)$に到達する確率を求めよ.
早稲田大学 私立 早稲田大学 2014年 第2問
$4$つの角がすべて$\pi$未満である平面上の四角形$\mathrm{ABCD}$において$\mathrm{AB}=5$,$\mathrm{CD}=10$とする.また,対角線$\mathrm{AC}$と$\mathrm{BD}$は互いに直交し,$\mathrm{AC}=12$,$\mathrm{BD}=9$とする.$\angle \mathrm{BAC}=x$,$\angle \mathrm{BDC}=y$,$\angle \mathrm{CBD}=\alpha$とするとき,次の問に答えよ.

(1)$\sin x$および$\sin y$の値を求めよ.
(2)$\sin \alpha$および$\cos \alpha$の値を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{BA}}$と$\overrightarrow{\mathrm{BC}}$の内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第3問
条件$\log_2 (y-1)=\log_2 (x-2)+\log_2 (x-3)$を満たす点$(x,\ y)$全体の集合が$xy$平面上に描く曲線を$A$とする.次の問に答えよ.

(1)曲線$A$を図示せよ.
(2)直線$y=\alpha x+\beta$が曲線$A$の接線であるとき,$\alpha$と$\beta$の間に成り立つ関係式を求めよ.また,$\alpha$と$\beta$の取り得る値の範囲を求めよ.
(3)直線$y=ax+b$が曲線$A$と共有点をもたないような$a,\ b$の条件を求めよ.
学習院大学 私立 学習院大学 2014年 第2問
平面上の$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(3,\ 2)$と直線$L:y=ax+1$に対して,$\mathrm{P}$と$L$の距離を$p$とし,$\mathrm{Q}$と$L$の距離を$q$とする.$a$が実数全体を動くとき,$p^2+q^2$の最小値と,最小値を与える$a$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第4問
原点を$\mathrm{O}$とする空間に点$\mathrm{A}(1,\ 1,\ 1)$,点$\mathrm{B}(1,\ 2,\ 3)$,点$\mathrm{P}(4,\ 0,\ -1)$がある.線分$\mathrm{AB}$を直径とする円のうち,直線$\mathrm{OA}$と$2$点で交わるものを円$S$とし,点$\mathrm{A}$以外の交点を$\mathrm{C}$とする.

(1)点$\mathrm{C}$の座標は$([チ],\ [ツ],\ [テ])$である.
(2)円$S$を含む平面と,点$\mathrm{P}$からこの平面におろした垂線との交点の座標は$\displaystyle \left( \frac{[ト]}{[ナ]},\ [ニ],\ -\frac{3}{2} \right)$である.
昭和大学 私立 昭和大学 2014年 第2問
平面上に$2$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(0,\ 0)$および直線$\ell:x+y=2$がある.直線$\ell$上に点$\mathrm{P}(t,\ -t+2)$をとる.次の各問に答えよ.

(1)$\angle \mathrm{APB}=\theta$とおく.このとき,常に$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$となることがわかっている.
$(1$-$1)$ $t=-2$のとき,$\tan \theta$の値を求めよ.
$(1$-$2)$ $\tan \theta$を$t$を用いて表せ.
(2)$\angle \mathrm{APB}=\theta$を最大にする点$\mathrm{P}$の座標,およびそのときの$\tan \theta$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に

放物線$C_1:y=x^2$,円$C_2:x^2+(y-a)^2=1 \quad (a \geqq 0)$

がある.$C_2$の点$(0,\ a+1)$における接線と$C_1$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\triangle \mathrm{OAB}$が$C_2$に外接しているとする.次の問に答えよ.

(1)$a$を求めよ.
(2)点$(s,\ t)$を$(-1,\ a)$,$(1,\ a)$,$(0,\ a-1)$と異なる$C_2$上の点とする.そして点$(s,\ t)$における$C_2$の接線と$C_1$との$2$つの交点を$\mathrm{P}(\alpha,\ \alpha^2)$,$\mathrm{Q}(\beta,\ \beta^2)$とする.このとき,${(\alpha-\beta)}^2-\alpha^2 \beta^2$は$s,\ t$によらない定数であることを示せ.
(3)$(2)$において,点$\mathrm{P}(\alpha,\ \alpha^2)$から$C_2$への$2$つの接線が再び$C_1$と交わる点を$\mathrm{Q}(\beta,\ \beta^2)$,$\mathrm{R}(\gamma,\ \gamma^2)$とする.$\beta+\gamma$および$\beta\gamma$を$\alpha$を用いて表せ.
(4)$(3)$の$2$点$\mathrm{Q}$,$\mathrm{R}$に対し,直線$\mathrm{QR}$は$C_2$と接することを示せ.
津田塾大学 私立 津田塾大学 2014年 第3問
下図は,半径$1$の円を底面とする高さ$1$の円柱を,底面に垂直な平面で切り取ったものである.ここで,線分$\mathrm{OA}$は底面に垂直である.また,点$\mathrm{B}$,$\mathrm{E}$,$\mathrm{F}$は点$\mathrm{A}$を通り線分$\mathrm{OA}$に垂直な平面上にあり,線分$\mathrm{AF}$と$\mathrm{BE}$は垂直である.さらに,$\mathrm{F}$は線分$\mathrm{BE}$の中点であり,$\displaystyle \mathrm{AF}=\frac{3}{2}$である.線分$\mathrm{OA}$上に点$\mathrm{X}$をとり,$\mathrm{OX}=t$とする.$\mathrm{X}$を通り,線分$\mathrm{OA}$に垂直な平面と線分$\mathrm{EC}$との交点を$\mathrm{G}$とする.
(図は省略)

(1)$\mathrm{BF}$を求めよ.
(2)$\mathrm{XG}$を$t$を用いて表せ.
(3)$\mathrm{X}$が$\mathrm{O}$から$\mathrm{A}$まで動くとき,線分$\mathrm{XG}$を線分$\mathrm{OA}$の周りに回転してできる図形が通過してできる立体の体積$V$を求めよ.
久留米大学 私立 久留米大学 2014年 第2問
$xy$平面上において,原点を通り傾きが正の直線を$\ell$とする.直線$\ell$上の$y$座標が$1$の点に,$x$軸の正の方向から$x$軸に平行な光線を入射したとき,光線は直線$\ell$と$x$軸で次々と反射を繰り返し,$n$回目に反射した後,入射した経路を逆に進んだとする.このときの直線$\ell$と$x$軸とのなす角を$\theta$とする.直線$\ell$での最初の反射を$1$回目,反射した点を$\mathrm{P}_1$とし,その後光線が反射した点を$\mathrm{P}_2,\ \mathrm{P}_3,\ \cdots,\ \mathrm{P}_n$とする.また,$0^\circ<\theta<{90}^\circ$とする.

(1)$\theta={30}^\circ$のときの$\mathrm{P}_n$の座標は$[$4$]$である.
(2)$\theta$のうち,その値が整数となるものは全部で$[$5$]$個ある.
(3)$\mathrm{P}_1$から$\mathrm{P}_n$までの光の経路の長さは$[$6$]$である.
同志社大学 私立 同志社大学 2014年 第2問
$p,\ q$を実数とする$t$に関する$2$次方程式$t^2+pt+q=0$の解が虚数になるとき,次の問いに答えよ.

(1)解の$1$つを$\alpha$とするとき,$\alpha (2-\alpha)$が実数でありかつ$\alpha (2-\alpha)<2$となるための$p,\ q$の条件を求めよ.
(2)虚部が負の解を$\beta$とする.$(1)$の条件のもとで$\beta (1-\beta)$の実部を$y$,虚部を$x$として,座標平面上の点$\mathrm{P}(x,\ y)$の軌跡を求めよ.
(3)$(2)$で求めた軌跡上の点$\mathrm{P}(x,\ y)$と定点$\mathrm{Q}(0,\ 1)$との距離が最小となるときの点$\mathrm{P}$の座標と距離$\mathrm{PQ}$を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。